875 resultados para Voltage disturbance detection and classification
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
[EN]This paper summarizes the proposal made by the SIANI team for the LifeCLEF 2015 Fish task. The approach makes use of standard detection techniques, applying a multiclass SVM based classifier on large enough Regions Of Interest (ROIs) automatically extracted from the provided video frames. The selection of the detection and classification modules is based on the best performance achieved for the validation dataset consisting of 20 annotated videos. For that dataset, the best classification achieved for an ideal detection module, reaches an accuracy around 40%.
Resumo:
A nivel mundial, el cáncer de mama es el tipo de cáncer más frecuente además de una de las principales causas de muerte entre la población femenina. Actualmente, el método más eficaz para detectar lesiones mamarias en una etapa temprana es la mamografía. Ésta contribuye decisivamente al diagnóstico precoz de esta enfermedad que, si se detecta a tiempo, tiene una probabilidad de curación muy alta. Uno de los principales y más frecuentes hallazgos en una mamografía, son las microcalcificaciones, las cuales son consideradas como un indicador importante de cáncer de mama. En el momento de analizar las mamografías, factores como la capacidad de visualización, la fatiga o la experiencia profesional del especialista radiólogo hacen que el riesgo de omitir ciertas lesiones presentes se vea incrementado. Para disminuir dicho riesgo es importante contar con diferentes alternativas como por ejemplo, una segunda opinión por otro especialista o un doble análisis por el mismo. En la primera opción se eleva el coste y en ambas se prolonga el tiempo del diagnóstico. Esto supone una gran motivación para el desarrollo de sistemas de apoyo o asistencia en la toma de decisiones. En este trabajo de tesis se propone, se desarrolla y se justifica un sistema capaz de detectar microcalcificaciones en regiones de interés extraídas de mamografías digitalizadas, para contribuir a la detección temprana del cáncer demama. Dicho sistema estará basado en técnicas de procesamiento de imagen digital, de reconocimiento de patrones y de inteligencia artificial. Para su desarrollo, se tienen en cuenta las siguientes consideraciones: 1. Con el objetivo de entrenar y probar el sistema propuesto, se creará una base de datos de imágenes, las cuales pertenecen a regiones de interés extraídas de mamografías digitalizadas. 2. Se propone la aplicación de la transformada Top-Hat, una técnica de procesamiento digital de imagen basada en operaciones de morfología matemática. La finalidad de aplicar esta técnica es la de mejorar el contraste entre las microcalcificaciones y el tejido presente en la imagen. 3. Se propone un algoritmo novel llamado sub-segmentación, el cual está basado en técnicas de reconocimiento de patrones aplicando un algoritmo de agrupamiento no supervisado, el PFCM (Possibilistic Fuzzy c-Means). El objetivo es encontrar las regiones correspondientes a las microcalcificaciones y diferenciarlas del tejido sano. Además, con la finalidad de mostrar las ventajas y desventajas del algoritmo propuesto, éste es comparado con dos algoritmos del mismo tipo: el k-means y el FCM (Fuzzy c-Means). Por otro lado, es importante destacar que en este trabajo por primera vez la sub-segmentación es utilizada para detectar regiones pertenecientes a microcalcificaciones en imágenes de mamografía. 4. Finalmente, se propone el uso de un clasificador basado en una red neuronal artificial, específicamente un MLP (Multi-layer Perceptron). El propósito del clasificador es discriminar de manera binaria los patrones creados a partir de la intensidad de niveles de gris de la imagen original. Dicha clasificación distingue entre microcalcificación y tejido sano. ABSTRACT Breast cancer is one of the leading causes of women mortality in the world and its early detection continues being a key piece to improve the prognosis and survival. Currently, the most reliable and practical method for early detection of breast cancer is mammography.The presence of microcalcifications has been considered as a very important indicator ofmalignant types of breast cancer and its detection and classification are important to prevent and treat the disease. However, the detection and classification of microcalcifications continue being a hard work due to that, in mammograms there is a poor contrast between microcalcifications and the tissue around them. Factors such as visualization, tiredness or insufficient experience of the specialist increase the risk of omit some present lesions. To reduce this risk, is important to have alternatives such as a second opinion or a double analysis for the same specialist. In the first option, the cost increases and diagnosis time also increases for both of them. This is the reason why there is a great motivation for development of help systems or assistance in the decision making process. This work presents, develops and justifies a system for the detection of microcalcifications in regions of interest extracted fromdigitizedmammographies to contribute to the early detection of breast cancer. This systemis based on image processing techniques, pattern recognition and artificial intelligence. For system development the following features are considered: With the aim of training and testing the system, an images database is created, belonging to a region of interest extracted from digitized mammograms. The application of the top-hat transformis proposed. This image processing technique is based on mathematical morphology operations. The aim of this technique is to improve the contrast betweenmicrocalcifications and tissue present in the image. A novel algorithm called sub-segmentation is proposed. The sub-segmentation is based on pattern recognition techniques applying a non-supervised clustering algorithm known as Possibilistic Fuzzy c-Means (PFCM). The aim is to find regions corresponding to the microcalcifications and distinguish them from the healthy tissue. Furthermore,with the aim of showing themain advantages and disadvantages this is compared with two algorithms of same type: the k-means and the fuzzy c-means (FCM). On the other hand, it is important to highlight in this work for the first time the sub-segmentation is used for microcalcifications detection. Finally, a classifier based on an artificial neural network such as Multi-layer Perceptron is used. The purpose of this classifier is to discriminate froma binary perspective the patterns built from gray level intensity of the original image. This classification distinguishes between microcalcifications and healthy tissue.
Resumo:
La presente Tesis investiga el campo del reconocimiento automático de imágenes mediante ordenador aplicado al análisis de imágenes médicas en mamografía digital. Hay un interés por desarrollar sistemas de aprendizaje que asistan a los radiólogos en el reconocimiento de las microcalcificaciones para apoyarles en los programas de cribado y prevención del cáncer de mama. Para ello el análisis de las microcalcificaciones se ha revelado como técnica clave de diagnóstico precoz, pero sin embargo el diseño de sistemas automáticos para reconocerlas es complejo por la variabilidad y condiciones de las imágenes mamográficas. En este trabajo se analizan los planteamientos teóricos de diseño de sistemas de reconocimiento de imágenes, con énfasis en los problemas específicos de detección y clasificación de microcalcificaciones. Se ha realizado un estudio que incluye desde las técnicas de operadores morfológicos, redes neuronales, máquinas de vectores soporte, hasta las más recientes de aprendizaje profundo mediante redes neuronales convolucionales, contemplando la importancia de los conceptos de escala y jerarquía a la hora del diseño y sus implicaciones en la búsqueda de la arquitectura de conexiones y capas de la red. Con estos fundamentos teóricos y elementos de diseño procedentes de otros trabajos en este área realizados por el autor, se implementan tres sistemas de reconocimiento de mamografías que reflejan una evolución tecnológica, culminando en un sistema basado en Redes Neuronales Convolucionales (CNN) cuya arquitectura se diseña gracias al análisis teórico anterior y a los resultados prácticos de análisis de escalas llevados a cabo en nuestra base de datos de imágenes. Los tres sistemas se entrenan y validan con la base de datos de mamografías DDSM, con un total de 100 muestras de entrenamiento y 100 de prueba escogidas para evitar sesgos y reflejar fielmente un programa de cribado. La validez de las CNN para el problema que nos ocupa queda demostrada y se propone un camino de investigación para el diseño de su arquitectura. ABSTRACT This Dissertation investigates the field of computer image recognition applied to medical imaging in mammography. There is an interest in developing learning systems to assist radiologists in recognition of microcalcifications to help them in screening programs for prevention of breast cancer. Analysis of microcalcifications has emerged as a key technique for early diagnosis of breast cancer, but the design of automatic systems to recognize them is complicated by the variability and conditions of mammographic images. In this Thesis the theoretical approaches to design image recognition systems are discussed, with emphasis on the specific problems of detection and classification of microcalcifications. Our study includes techniques ranging from morphological operators, neural networks and support vector machines, to the most recent deep convolutional neural networks. We deal with learning theory by analyzing the importance of the concepts of scale and hierarchy at the design stage and its implications in the search for the architecture of connections and network layers. With these theoretical facts and design elements coming from other works in this area done by the author, three mammogram recognition systems which reflect technological developments are implemented, culminating in a system based on Convolutional Neural Networks (CNN), whose architecture is designed thanks to the previously mentioned theoretical study and practical results of analysis conducted on scales in our image database. All three systems are trained and validated against the DDSM mammographic database, with a total of 100 training samples and 100 test samples chosen to avoid bias and stand for a real screening program. The validity of the CNN approach to the problem is demonstrated and a research way to help in designing the architecture of these networks is proposed.
Resumo:
Deep brain stimulation (DBS) provides significant therapeutic benefit for movement disorders such as Parkinson’s disease (PD). Current DBS devices lack real-time feedback (thus are open loop) and stimulation parameters are adjusted during scheduled visits with a clinician. A closed-loop DBS system may reduce power consumption and side effects by adjusting stimulation parameters based on patient’s behavior. Thus behavior detection is a major step in designing such systems. Various physiological signals can be used to recognize the behaviors. Subthalamic Nucleus (STN) Local field Potential (LFP) is a great candidate signal for the neural feedback, because it can be recorded from the stimulation lead and does not require additional sensors. This thesis proposes novel detection and classification techniques for behavior recognition based on deep brain LFP. Behavior detection from such signals is the vital step in developing the next generation of closed-loop DBS devices. LFP recordings from 13 subjects are utilized in this study to design and evaluate our method. Recordings were performed during the surgery and the subjects were asked to perform various behavioral tasks. Various techniques are used understand how the behaviors modulate the STN. One method studies the time-frequency patterns in the STN LFP during the tasks. Another method measures the temporal inter-hemispheric connectivity of the STN as well as the connectivity between STN and Pre-frontal Cortex (PFC). Experimental results demonstrate that different behaviors create different m odulation patterns in STN and it’s connectivity. We use these patterns as features to classify behaviors. A method for single trial recognition of the patient’s current task is proposed. This method uses wavelet coefficients as features and support vector machine (SVM) as the classifier for recognition of a selection of behaviors: speech, motor, and random. The proposed method is 82.4% accurate for the binary classification and 73.2% for classifying three tasks. As the next step, a practical behavior detection method which asynchronously detects behaviors is proposed. This method does not use any priori knowledge of behavior onsets and is capable of asynchronously detect the finger movements of PD patients. Our study indicates that there is a motor-modulated inter-hemispheric connectivity between LFP signals recorded bilaterally from STN. We utilize a non-linear regression method to measure this inter-hemispheric connectivity and to detect the finger movements. Our experimental results using STN LFP recorded from eight patients with PD demonstrate this is a promising approach for behavior detection and developing novel closed-loop DBS systems.
Resumo:
The aim of this study was to obtain the exact value of the keratometric index (nkexact) and to clinically validate a variable keratometric index (nkadj) that minimizes this error. Methods: The nkexact value was determined by obtaining differences (DPc) between keratometric corneal power (Pk) and Gaussian corneal power (PGauss c ) equal to 0. The nkexact was defined as the value associated with an equivalent difference in the magnitude of DPc for extreme values of posterior corneal radius (r2c) for each anterior corneal radius value (r1c). This nkadj was considered for the calculation of the adjusted corneal power (Pkadj). Values of r1c ∈ (4.2, 8.5) mm and r2c ∈ (3.1, 8.2) mm were considered. Differences of True Net Power with PGauss c , Pkadj, and Pk(1.3375) were calculated in a clinical sample of 44 eyes with keratoconus. Results: nkexact ranged from 1.3153 to 1.3396 and nkadj from 1.3190 to 1.3339 depending on the eye model analyzed. All the nkadj values adjusted perfectly to 8 linear algorithms. Differences between Pkadj and PGauss c did not exceed 60.7 D (Diopter). Clinically, nk = 1.3375 was not valid in any case. Pkadj and True Net Power and Pk(1.3375) and Pkadj were statistically different (P , 0.01), whereas no differences were found between PGauss c and Pkadj (P . 0.01). Conclusions: The use of a single value of nk for the calculation of the total corneal power in keratoconus has been shown to be imprecise, leading to inaccuracies in the detection and classification of this corneal condition. Furthermore, our study shows the relevance of corneal thickness in corneal power calculations in keratoconus.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade Gama, Programa de Pós-Graduação em Engenharia Biomédica, 2016.
Resumo:
Staff detection and removal is one of the most important issues in optical music recognition (OMR) tasks since common approaches for symbol detection and classification are based on this process. Due to its complexity, staff detection and removal is often inaccurate, leading to a great number of errors in posterior stages. For this reason, a new approach that avoids this stage is proposed in this paper, which is expected to overcome these drawbacks. Our approach is put into practice in a case of study focused on scores written in white mensural notation. Symbol detection is performed by using the vertical projection of the staves. The cross-correlation operator for template matching is used at the classification stage. The goodness of our proposal is shown in an experiment in which our proposal attains an extraction rate of 96 % and a classification rate of 92 %, on average. The results found have reinforced the idea of pursuing a new research line in OMR systems without the need of the removal of staff lines.
Resumo:
This master dissertation presents the study and implementation of inteligent algorithms to monitor the measurement of sensors involved in natural gas custody transfer processes. To create these algoritmhs Artificial Neural Networks are investigated because they have some particular properties, such as: learning, adaptation, prediction. A neural predictor is developed to reproduce the sensor output dynamic behavior, in such a way that its output is compared to the real sensor output. A recurrent neural network is used for this purpose, because of its ability to deal with dynamic information. The real sensor output and the estimated predictor output work as the basis for the creation of possible sensor fault detection and diagnosis strategies. Two competitive neural network architectures are investigated and their capabilities are used to classify different kinds of faults. The prediction algorithm and the fault detection classification strategies, as well as the obtained results, are presented
Resumo:
Anche se l'isteroscopia con la biopsia endometriale è il gold standard nella diagnosi della patologia intracavitaria uterina, l'esperienza dell’isteroscopista è fondamentale per una diagnosi corretta. Il Deep Learning (DL) come metodica di intelligenza artificiale potrebbe essere un aiuto per superare questo limite. Sono disponibili pochi studi con risultati preliminari e mancano ricerche che valutano le prestazioni dei modelli di DL nell'identificazione delle lesioni intrauterine e il possibile aiuto derivato dai fattori clinici. Obiettivo: Sviluppare un modello di DL per identificare e classificare le patologie endocavitarie uterine dalle immagini isteroscopiche. Metodi: È stato eseguito uno studio di coorte retrospettivo osservazionale monocentrico su una serie consecutiva di casi isteroscopici di pazienti con patologia intracavitaria uterina confermata all’esame istologico eseguiti al Policlinico S. Orsola. Le immagini isteroscopiche sono state usate per costruire un modello di DL per la classificazione e l'identificazione delle lesioni intracavitarie con e senza l'aiuto di fattori clinici (età, menopausa, AUB, terapia ormonale e tamoxifene). Come risultati dello studio abbiamo calcolato le metriche diagnostiche del modello di DL nella classificazione e identificazione delle lesioni uterine intracavitarie con e senza l'aiuto dei fattori clinici. Risultati: Abbiamo esaminato 1.500 immagini provenienti da 266 casi: 186 pazienti avevano lesioni focali benigne, 25 lesioni diffuse benigne e 55 lesioni preneoplastiche/neoplastiche. Sia per quanto riguarda la classificazione che l’identificazione, le migliori prestazioni sono state raggiunte con l'aiuto dei fattori clinici, complessivamente con precision dell'80,11%, recall dell'80,11%, specificità del 90,06%, F1 score dell’80,11% e accuratezza dell’86,74% per la classificazione. Per l’identificazione abbiamo ottenuto un rilevamento complessivo dell’85,82%, precision 93,12%, recall del 91,63% ed F1 score del 92,37%. Conclusioni: Il modello DL ha ottenuto una bassa performance nell’identificazione e classificazione delle lesioni intracavitarie uterine dalle immagini isteroscopiche. Anche se la migliore performance diagnostica è stata ottenuta con l’aiuto di fattori clinici specifici, questo miglioramento è stato scarso.
Resumo:
The application of support vector machine classification (SVM) to combined information from magnetic resonance imaging (MRI) and [F18]fluorodeoxyglucose positron emission tomography (FDG-PET) has been shown to improve detection and differentiation of Alzheimer's disease dementia (AD) and frontotemporal lobar degeneration. To validate this approach for the most frequent dementia syndrome AD, and to test its applicability to multicenter data, we randomly extracted FDG-PET and MRI data of 28 AD patients and 28 healthy control subjects from the database provided by the Alzheimer's Disease Neuroimaging Initiative (ADNI) and compared them to data of 21 patients with AD and 13 control subjects from our own Leipzig cohort. SVM classification using combined volume-of-interest information from FDG-PET and MRI based on comprehensive quantitative meta-analyses investigating dementia syndromes revealed a higher discrimination accuracy in comparison to single modality classification. For the ADNI dataset accuracy rates of up to 88% and for the Leipzig cohort of up to 100% were obtained. Classifiers trained on the ADNI data discriminated the Leipzig cohorts with an accuracy of 91%. In conclusion, our results suggest SVM classification based on quantitative meta-analyses of multicenter data as a valid method for individual AD diagnosis. Furthermore, combining imaging information from MRI and FDG-PET might substantially improve the accuracy of AD diagnosis.
Resumo:
Traditional mathematical tools, like Fourier Analysis, have proven to be efficient when analyzing steady-state distortions; however, the growing utilization of electronically controlled loads and the generation of a new dynamics in industrial environments signals have suggested the need of a powerful tool to perform the analysis of non-stationary distortions, overcoming limitations of frequency techniques. Wavelet Theory provides a new approach to harmonic analysis, focusing the decomposition of a signal into non-sinusoidal components, which are translated and scaled in time, generating a time-frequency basis. The correct choice of the waveshape to be used in decomposition is very important and discussed in this work. A brief theoretical introduction on Wavelet Transform is presented and some cases (practical and simulated) are discussed. Distortions commonly found in industrial environments, such as the current waveform of a Switched-Mode Power Supply and the input phase voltage waveform of motor fed by inverter are analyzed using Wavelet Theory. Applications such as extracting the fundamental frequency of a non-sinusoidal current signal, or using the ability of compact representation to detect non-repetitive disturbances are presented.
Resumo:
The research activity carried out during the PhD course in Electrical Engineering belongs to the branch of electric and electronic measurements. The main subject of the present thesis is a distributed measurement system to be installed in Medium Voltage power networks, as well as the method developed to analyze data acquired by the measurement system itself and to monitor power quality. In chapter 2 the increasing interest towards power quality in electrical systems is illustrated, by reporting the international research activity inherent to the problem and the relevant standards and guidelines emitted. The aspect of the quality of voltage provided by utilities and influenced by customers in the various points of a network came out only in recent years, in particular as a consequence of the energy market liberalization. Usually, the concept of quality of the delivered energy has been associated mostly to its continuity. Hence the reliability was the main characteristic to be ensured for power systems. Nowadays, the number and duration of interruptions are the “quality indicators” commonly perceived by most customers; for this reason, a short section is dedicated also to network reliability and its regulation. In this contest it should be noted that although the measurement system developed during the research activity belongs to the field of power quality evaluation systems, the information registered in real time by its remote stations can be used to improve the system reliability too. Given the vast scenario of power quality degrading phenomena that usually can occur in distribution networks, the study has been focused on electromagnetic transients affecting line voltages. The outcome of such a study has been the design and realization of a distributed measurement system which continuously monitor the phase signals in different points of a network, detect the occurrence of transients superposed to the fundamental steady state component and register the time of occurrence of such events. The data set is finally used to locate the source of the transient disturbance propagating along the network lines. Most of the oscillatory transients affecting line voltages are due to faults occurring in any point of the distribution system and have to be seen before protection equipment intervention. An important conclusion is that the method can improve the monitored network reliability, since the knowledge of the location of a fault allows the energy manager to reduce as much as possible both the area of the network to be disconnected for protection purposes and the time spent by technical staff to recover the abnormal condition and/or the damage. The part of the thesis presenting the results of such a study and activity is structured as follows: chapter 3 deals with the propagation of electromagnetic transients in power systems by defining characteristics and causes of the phenomena and briefly reporting the theory and approaches used to study transients propagation. Then the state of the art concerning methods to detect and locate faults in distribution networks is presented. Finally the attention is paid on the particular technique adopted for the same purpose during the thesis, and the methods developed on the basis of such approach. Chapter 4 reports the configuration of the distribution networks on which the fault location method has been applied by means of simulations as well as the results obtained case by case. In this way the performance featured by the location procedure firstly in ideal then in realistic operating conditions are tested. In chapter 5 the measurement system designed to implement the transients detection and fault location method is presented. The hardware belonging to the measurement chain of every acquisition channel in remote stations is described. Then, the global measurement system is characterized by considering the non ideal aspects of each device that can concur to the final combined uncertainty on the estimated position of the fault in the network under test. Finally, such parameter is computed according to the Guide to the Expression of Uncertainty in Measurements, by means of a numeric procedure. In the last chapter a device is described that has been designed and realized during the PhD activity aiming at substituting the commercial capacitive voltage divider belonging to the conditioning block of the measurement chain. Such a study has been carried out aiming at providing an alternative to the used transducer that could feature equivalent performance and lower cost. In this way, the economical impact of the investment associated to the whole measurement system would be significantly reduced, making the method application much more feasible.
Resumo:
Liver steatosis is a common disease usually associated with social and genetic factors. Early detection and quantification is important since it can evolve to cirrhosis. Steatosis is usually a diffuse liver disease, since it is globally affected. However, steatosis can also be focal affecting only some foci difficult to discriminate. In both cases, steatosis is detected by laboratorial analysis and visual inspection of ultrasound images of the hepatic parenchyma. Liver biopsy is the most accurate diagnostic method but its invasive nature suggest the use of other non-invasive methods, while visual inspection of the ultrasound images is subjective and prone to error. In this paper a new Computer Aided Diagnosis (CAD) system for steatosis classification and analysis is presented, where the Bayes Factor, obatined from objective intensity and textural features extracted from US images of the liver, is computed in a local or global basis. The main goal is to provide the physician with an application to make it faster and accurate the diagnosis and quantification of steatosis, namely in a screening approach. The results showed an overall accuracy of 93.54% with a sensibility of 95.83% and 85.71% for normal and steatosis class, respectively. The proposed CAD system seemed suitable as a graphical display for steatosis classification and comparison with some of the most recent works in the literature is also presented.
Resumo:
In this work liver contour is semi-automatically segmented and quantified in order to help the identification and diagnosis of diffuse liver disease. The features extracted from the liver contour are jointly used with clinical and laboratorial data in the staging process. The classification results of a support vector machine, a Bayesian and a k-nearest neighbor classifier are compared. A population of 88 patients at five different stages of diffuse liver disease and a leave-one-out cross-validation strategy are used in the classification process. The best results are obtained using the k-nearest neighbor classifier, with an overall accuracy of 80.68%. The good performance of the proposed method shows a reliable indicator that can improve the information in the staging of diffuse liver disease.