905 resultados para Virtual Reality Structural Engineering Design


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional engineering design methods are based on Simon's (1969) use of the concept function, and as such collectively suffer from both theoretical and practical shortcomings. Researchers in the field of affordance-based design have borrowed from ecological psychology in an attempt to address the blind spots of function-based design, developing alternative ontologies and design processes. This dissertation presents function and affordance theory as both compatible and complimentary. We first present a hybrid approach to design for technology change, followed by a reconciliation and integration of function and affordance ontologies for use in design. We explore the integration of a standard function-based design method with an affordance-based design method, and demonstrate how affordance theory can guide the early application of function-based design. Finally, we discuss the practical and philosophical ramifications of embracing affordance theory's roots in ecology and ecological psychology, and explore the insights and opportunities made possible by an ecological approach to engineering design. The primary contribution of this research is the development of an integrated ontology for describing and designing technological systems using both function- and affordance-based methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Buildings and other infrastructures located in the coastal regions of the US have a higher level of wind vulnerability. Reducing the increasing property losses and causalities associated with severe windstorms has been the central research focus of the wind engineering community. The present wind engineering toolbox consists of building codes and standards, laboratory experiments, and field measurements. The American Society of Civil Engineers (ASCE) 7 standard provides wind loads only for buildings with common shapes. For complex cases it refers to physical modeling. Although this option can be economically viable for large projects, it is not cost-effective for low-rise residential houses. To circumvent these limitations, a numerical approach based on the techniques of Computational Fluid Dynamics (CFD) has been developed. The recent advance in computing technology and significant developments in turbulence modeling is making numerical evaluation of wind effects a more affordable approach. The present study targeted those cases that are not addressed by the standards. These include wind loads on complex roofs for low-rise buildings, aerodynamics of tall buildings, and effects of complex surrounding buildings. Among all the turbulence models investigated, the large eddy simulation (LES) model performed the best in predicting wind loads. The application of a spatially evolving time-dependent wind velocity field with the relevant turbulence structures at the inlet boundaries was found to be essential. All the results were compared and validated with experimental data. The study also revealed CFD’s unique flow visualization and aerodynamic data generation capabilities along with a better understanding of the complex three-dimensional aerodynamics of wind-structure interactions. With the proper modeling that realistically represents the actual turbulent atmospheric boundary layer flow, CFD can offer an economical alternative to the existing wind engineering tools. CFD’s easy accessibility is expected to transform the practice of structural design for wind, resulting in more wind-resilient and sustainable systems by encouraging optimal aerodynamic and sustainable structural/building design. Thus, this method will help ensure public safety and reduce economic losses due to wind perils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Corrosion of steel tendons is a major problem for post-tensioned concrete, especially because corrosion of the steel strands is often hard to detect inside grouted ducts. Non-metallic tendons can serve as an alternative material to steel for post-tensioning applications. Carbon fiber reinforced polymer (CFRP), given its higher strength and elastic modulus, as well as excellent durability and fatigue strength, is the most practical option for post-tensioning applications. The primary objective of this research project was to assess the feasibility of the use of innovative carbon fiber reinforced polymer (CFRP) tendons and to develop guidelines for CFRP in post-tensioned bridge applications, including segmental bridges and pier caps. An experimental investigation and a numerical simulation were conducted to compare the performance of a scaled segmental bridge model, post-tensioned with two types of carbon fiber strands and steel strands. The model was tested at different prestress levels and at different loading configurations. While the study confirms feasibility of both types of carbon fiber strands for segmental bridge applications, and their similar serviceability behavior, strands with higher elastic modulus could improve structural performance and minimize displacements beyond service loads. As the second component of the project, a side-by-side comparison of two types of carbon fiber strands against steel strands was conducted in a scaled pier cap model. Two different strand arrangements were used for post-tensioning, with eight and six strands, respectively representing an over-design and a slight under-design relative to the factored demand. The model was tested under service and factored loads. The investigation confirmed the feasibility of using carbon fiber strands in unbonded post-tensioning of pier caps. Considering both serviceability and overload conditions, the general performance of the pier cap model was deemed acceptable using either type of carbon fiber strands and quite comparable to that of steel strands. In another component of this research, creep stress tests were conducted with carbon fiber composite cable (CFCC). The anchorages for all the specimens were prepared using a commercially available expansive grout. Specimens withstood 95% of the guaranteed capacity provided by the manufacturer for a period of five months, without any sign of rupture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tall buildings are wind-sensitive structures and could experience high wind-induced effects. Aerodynamic boundary layer wind tunnel testing has been the most commonly used method for estimating wind effects on tall buildings. Design wind effects on tall buildings are estimated through analytical processing of the data obtained from aerodynamic wind tunnel tests. Even though it is widely agreed that the data obtained from wind tunnel testing is fairly reliable the post-test analytical procedures are still argued to have remarkable uncertainties. This research work attempted to assess the uncertainties occurring at different stages of the post-test analytical procedures in detail and suggest improved techniques for reducing the uncertainties. Results of the study showed that traditionally used simplifying approximations, particularly in the frequency domain approach, could cause significant uncertainties in estimating aerodynamic wind-induced responses. Based on identified shortcomings, a more accurate dual aerodynamic data analysis framework which works in the frequency and time domains was developed. The comprehensive analysis framework allows estimating modal, resultant and peak values of various wind-induced responses of a tall building more accurately. Estimating design wind effects on tall buildings also requires synthesizing the wind tunnel data with local climatological data of the study site. A novel copula based approach was developed for accurately synthesizing aerodynamic and climatological data up on investigating the causes of significant uncertainties in currently used synthesizing techniques. Improvement of the new approach over the existing techniques was also illustrated with a case study on a 50 story building. At last, a practical dynamic optimization approach was suggested for tuning structural properties of tall buildings towards attaining optimum performance against wind loads with less number of design iterations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The establishment of support platforms for the development of a new culture in design education, in order to achieve both research exploitation and its results, as an approach to the industrial community, challenges higher education institutions to rethink their functioning, divided between investigation on their own initiative or on demand, and its usefulness / practical application. At the same time, through design education, how can they be the engine that aggregates all these frequently antagonistic interests? Polytechnic institutes are predisposed to collaboration and interdisciplinarity. In our course of Technology and Design of Furniture, the availability of a production unit, testing laboratories, and expertise in engineering, design and marketing, encourage the development of a holistic project. In order to develop such knowledge, we adapt three important ways of thinking in designing interactions influenced by the traditional approach, namely, 1) identifying and understanding a design problem, i.e. a market need, 2) defining the design process and knowing what can be used for design education, i.e. opportunities for design education, and 3) sustainability of this framework and design projects' alignment with education in the same field. We explain our approach by arguing from the academicenterprise experiences perspective. This concept is proposed as a way to achieve those three ways of thinking in design education. Then, a set of interaction attributes is defined to explain how engineering and product design education can enhance meaningful relations with manufacturers, stakeholders and society in general. A final discussion is presented with the implications and benefits of this approach. The results suggest that through academic-enterprise partnerships in design, several goals such as students' motivation, product design innovation and potential for knowledge transfer to industries can be achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2016-09-29 17:45:16.051

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Projeto de Graduação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Licenciada em Fisioterapia

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amid the remarkable growth of innovative technologies, particularly immersive technologies like Extended Reality (XR) (comprising of Virtual Reality (VR), Augmented Reality (AR) & Mixed Reality (MR)), a transformation is unfolding in the way we collaborate and interact. The current research takes the initiative to explore XR’s potential for co-creation activities and proposes XR as a future co-creation platform. It strives to develop a XR-based co-creation system, actively engage stakeholders in the co-creation process, with the goal of enhancing their creative businesses. The research leverages XR tools to investigate how they can enhance digital co-creation methods and determine if the system facilitates efficient and effective value creation during XR-based co-creation sessions. In specific terms, the research probes into whether the XR-based co-creation method and environment enhances the quality and novelty of ideas, reduce communication challenges by providing better understanding of the product, problem or process and optimize the process in terms of reduction in time and costs. The research introduces a multi-user, multi-sensory collaborative and interactive XR platform that adapts to various use-case scenarios. This thesis also presents the user testing performed to collect both qualitative and quantitative data, which serves to substantiate the hypothesis. What sets this XR system apart is its incorporation of fully functional prototypes into a mixed reality environment, providing users with a unique dimension within an immersive digital landscape. The outcomes derived from the experimental studies demonstrate that XR-based co-creation surpasses conventional desktop co-creation methods and remarkably, the results are even comparable to a full mock-up test. In conclusion, the research underscores that the utilization of XR as a tool for co-creation generates substantial value. It serves as a method that enhances the process, an environment that fosters interaction and collaboration, and a platform that equips stakeholders with the means to engage effectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is to present a general overview of state-of-the-art related to design for uncertainty with a focus on aerospace structures. In particular, a simulation on a FCCZ lattice cell and on the profile shape of a nozzle will be performed. Optimization under uncertainty is characterized by the need to make decisions without complete knowledge of the problem data. When dealing with a complex problem, non-linearity, or optimization, two main issues are raised: the uncertainty of the feasibility of the solution and the uncertainty of the objective value of the function. In the first part, the Design Of Experiments (DOE) methodologies, Uncertainty Quantification (UQ), and then Uncertainty optimization will be deepened. The second part will show an application of the previous theories on through a commercial software. Nowadays multiobjective optimization on high non-linear problem can be a powerful tool to approach new concept solutions or to develop cutting-edge design. In this thesis an effective improvement have been reached on a rocket nozzle. Future work could include the introduction of multi scale modelling, multiphysics approach and every strategy useful to simulate as much possible real operative condition of the studied design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’elaborato di tesi che segue si propone di ricercare una nuova linea di esperienza utente e d’interazione attraverso la tecnologia della realtà aumentata contestualizzata nel mondo della produzione musicale. La tesi analizza innanzitutto la tecnologia come strumento d’interazione, la sua storia e la sua evoluzione fino ai nostri giorni con un excursus sui campi applicativi e i device utili per avere un’esperienza completa. L’analisi prosegue attraverso un’attenta ricerca sullo stato dell’arte e sulle applicazioni di realtà aumentata nel campo della musica presenti sul mercato per giungere ad una dettagliata indagine sugli strumenti che hanno indirizzato il concept di progetto. L’output di progetto è rappresentato da un’interfaccia 2d per la parametrizzazione di alcuni settaggi fondamentali ed infine da un’interfaccia semplificata in realtà aumentata. Quest’ultima è composta prevalentemente da sliders con cui è possibile modificare dei parametri della traccia audio portando l’esperienza di produzione musicale verso una concezione democratica, semplificata e giocosa. L’obiettivo di progetto è stato quello di creare un sistema di facile utilizzo anche da parti di utenti poco esperti con i software Daw presenti sul mercato attualmente.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Siamo sempre stati abituati fin dal principio ad interagire con l’ambiente che ci circonda, utilizzando gli oggetti fisici presenti attorno a noi per soddisfare le nostre esigenze, ma se esistesse di più di questo? Se fosse possibile avere attorno a noi oggetti che non sono propriamente corpi fisici, ma che hanno un comportamento coerente con l’ambiente circostante e non venisse percepita la differenza tra essi e un vero e proprio oggetto? Ci si sta riferendo a quella che oggi viene chiamata Mixed Reality, una realtà mista resa visibile tramite appositi dispositivi, in cui è possibile interagire contemporaneamente con oggetti fisici e oggetti digitali che vengono chiamati ologrammi. Un aspetto fondamentale che riguarda questa tipologia di sistemi è sicuramente la collaborazione. In questa tesi viene esaminato il panorama delle tecnologie allo stato dell'arte che permettono di vivere esperienze di Collaborative Mixed Reality, ma soprattutto ci si concentra sulla progettazione di una vera e propria architettura in rete locale che consenta la realizzazione di un sistema condiviso. Successivamente all'applicazione di varie strategie vengono valutati i risultati ottenuti da rigorose misurazioni, per determinare scientificamente le prestazioni dell'architettura progettata e poter trarre delle conclusioni, considerando analogie e differenze rispetto ad altre possibili soluzioni.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The alkali-aggregate reaction (AAR) is a chemical reaction that provokes a heterogeneous expansion of concrete and reduces important properties such as Young's modulus, leading to a reduction in the structure's useful life. In this study, a parametric model is employed to determine the spatial distribution of the concrete expansion, combining normalized factors that influence the reaction through an AAR expansion law. Optimization techniques were employed to adjust the numerical results and observations in a real structure. A three-dimensional version of the model has been implemented in a finite element commercial package (ANSYS(C)) and verified in the analysis of an accelerated mortar test. Comparisons were made between two AAR mathematical descriptions for the mechanical phenomenon, using the same methodology, and an expansion curve obtained from experiment. Some parametric studies are also presented. The numerical results compared very well with the experimental data validating the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of the early age concrete properties is becoming more important, as the thermal effects and the shrinkage, even in the first hours, could generate cracks, increasing the permeability of the structure and being able to induce problems of durability and functionality in the same ones. The detailed study of the stresses development during the construction process can be decisive to keep low the cracking levels. In this work a computational model, based on the finite element method, was implemented to simulate the early age concrete behavior and, specially, the evaluation of the cracking risk. The finite element analysis encloses the computational modeling of the following phenomena: chemical, thermal, moisture diffusion and mechanical which occur at the first days after the concrete cast. The developed software results were compared with experimental values found in the literature, demonstrating an excellent approach for all the implemented analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Honeycomb structures have been used in different engineering fields. In civil engineering, honeycomb fiber-reinforced polymer (FRP) structures have been used as bridge decks to rehabilitate highway bridges in the United States. In this work, a simplified finite-element modeling technique for honeycomb FRP bridge decks is presented. The motivation is the combination of the complex geometry of honeycomb FRP decks and computational limits, which may prevent modeling of these decks in detail. The results from static and modal analyses indicate that the proposed modeling technique provides a viable tool for modeling the complex geometry of honeycomb FRP bridge decks. The modeling of other bridge components (e.g., steel girders, steel guardrails, deck-to-girder connections, and pier supports) is also presented in this work.