946 resultados para Viral immunology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study was to evaluate the prevalence of HEV, TTV and GBV-C/GBV-C/HGV in patients with acute viral hepatitis A, B and non-A-C. We evaluated sera of 94 patients from a sentinel program who had acute hepatitis A (N = 40), B (N = 42) and non-A-C (N = 12); 71 blood donors served as controls. IgM and anti-HEV IgG antibodies were detected by enzyme immunoassay using commercial kits. TTV and GBV-C/HGV were detected by nested PCR; genotyping was done by sequencing and phylogenetic analysis. Anti-HEV IgG was present in 38, 10 and 17% of patients with hepatitis A, B and non-A-C. Four patients with hepatitis A and 1 with non-A-C hepatitis also had anti-HEV IgM detected in serum. TTV was detected in 21% of patients with acute hepatitis and in 31% of donors. GBV-C/HGV was detected in 9% of patients with hepatitis, and in 10% of donors. We found TTV isolates of genotypes 1, 2, 3, and 4 and GBV-C/HGV isolates of genotypes 1 and 2. Mean aminotransferase levels were lower in patients who were TTV or GBV-C/HGV positive. In conclusion, the detection of anti-HEV IgM in some acute hepatitis A cases suggests co-infection with HEV and hepatitis E could be the etiology of a few cases of sporadic non-A-C hepatitis in Salvador, Brazil. TTV genotype 1, 2, 3 and 4 isolates and GBV-C/HGV genotype 1 and 2 strains are frequent in the studied population. TTV and GBV-C/HGV infection does not appear to have a role in the etiology of acute hepatitis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enveloped viruses always gain entry into the cytoplasm by fusion of their lipid envelope with a cell membrane. Some enveloped viruses fuse directly with the host cell plasma membrane after virus binding to the cell receptor. Other enveloped viruses enter the cells by the endocytic pathway, and fusion depends on the acidification of the endosomal compartment. In both cases, virus-induced membrane fusion is triggered by conformational changes in viral envelope glycoproteins. Two different classes of viral fusion proteins have been described on the basis of their molecular architecture. Several structural data permitted the elucidation of the mechanisms of membrane fusion mediated by class I and class II fusion proteins. In this article, we review a number of results obtained by our laboratory and by others that suggest that the mechanisms involved in rhabdovirus fusion are different from those used by the two well-studied classes of viral glycoproteins. We focus our discussion on the electrostatic nature of virus binding and interaction with membranes, especially through phosphatidylserine, and on the reversibility of the conformational changes of the rhabdovirus glycoprotein involved in fusion. Taken together, these data suggest the existence of a third class of fusion proteins and support the idea that new insights should emerge from studies of membrane fusion mediated by the G protein of rhabdoviruses. In particular, the elucidation of the three-dimensional structure of the G protein or even of the fusion peptide at different pH's might provide valuable information for understanding the fusion mechanism of this new class of fusion proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To evaluate the human T-cell lymphotropic virus type I (HTLV-I) proviral DNA load among asymptomatic HTLV-I-infected carriers and patients with HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP), real time PCR using TaqMan probes for the pol gene was performed in two million peripheral blood mononuclear cells (PBMC). The albumin gene was the internal genomic control and MT2 cells were used as positive control. The results are reported as copies/10,000 PBMC, and the detection limit was 10 copies. A total of 89 subjects (44 HAM/TSP and 45 healthy HTLV-I-infected carriers) followed up at the Institute of Infectious Diseases "Emilio Ribas" and in the Neurology Division of Hospital of Clínicas were studied. The asymptomatic HTLV-I-infected carriers had a median number of 271 copies (ranging from 5 to 4756 copies), whereas the HAM/TSP cases presented a median of 679 copies (5-5360 copies) in 10,000 PBMC. Thus, HAM/TSP patients presented a significantly higher HTLV-I proviral DNA load than healthy HTLV-I carriers (P = 0.005, one-way Mann-Whitney test). As observed in other persistent infections, proviral DNA load quantification may be an important tool for monotoring HTLV-I-infected subjects. However, long-term follow-up is necessary to validate this assay in the clinical setting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bovine herpesvirus type 5 (BHV-5) is a major agent of meningoencephalitis in cattle and establishes latent infections mainly in sensory nerve ganglia. The distribution of latent BHV-5 DNA in the brain of rabbits prior to and after virus reactivation was studied using a nested PCR. Fifteen rabbits inoculated intranasally with BHV-5 were euthanized 60 days post-inoculation (group A, N = 8) or submitted to dexamethasone treatment (2.6 mg kg-1 day-1, im, for 5 days) and euthanized 60 days later (group B, N = 7) for tissue examination. Two groups of BHV-1-infected rabbits (C, N = 3 and D, N = 3) submitted to each treatment were used as controls. Viral DNA of group A rabbits was consistently detected in trigeminal ganglia (8/8), frequently in cerebellum (5/8), anterior cerebral cortex and pons-medulla (3/8) and occasionally in dorsolateral (2/8), ventrolateral and posterior cerebral cortices, midbrain and thalamus (1/8). Viral DNA of group B rabbits showed a broader distribution, being detected at higher frequency in ventrolateral (6/7) and posterior cerebral cortices (5/7), pons-medulla (6/7), thalamus (4/7), and midbrain (3/7). In contrast, rabbits inoculated with BHV-1 harbored viral DNA almost completely restricted to trigeminal ganglia and the distribution did not change post-reactivation. These results demonstrate that latency by BHV-5 is established in several areas of the rabbit's brain and that virus reactivation leads to a broader distribution of latent viral DNA. Spread of virus from trigeminal ganglia and other areas of the brain likely contributes to this dissemination and may contribute to the recrudescence of neurological disease frequently observed upon BHV-5 reactivation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calves born persistently infected with non-cytopathic bovine viral diarrhea virus (ncpBVDV) frequently develop a fatal gastroenteric illness called mucosal disease. Both the original virus (ncpBVDV) and an antigenically identical but cytopathic virus (cpBVDV) can be isolated from animals affected by mucosal disease. Cytopathic BVDVs originate from their ncp counterparts by diverse genetic mechanisms, all leading to the expression of the non-structural polypeptide NS3 as a discrete protein. In contrast, ncpBVDVs express only the large precursor polypeptide, NS2-3, which contains the NS3 sequence within its carboxy-terminal half. We report here the investigation of the mechanism leading to NS3 expression in 41 cpBVDV isolates. An RT-PCR strategy was employed to detect RNA insertions within the NS2-3 gene and/or duplication of the NS3 gene, two common mechanisms of NS3 expression. RT-PCR amplification revealed insertions in the NS2-3 gene of three cp isolates, with the inserts being similar in size to that present in the cpBVDV NADL strain. Sequencing of one such insert revealed a 296-nucleotide sequence with a central core of 270 nucleotides coding for an amino acid sequence highly homologous (98%) to the NADL insert, a sequence corresponding to part of the cellular J-Domain gene. One cpBVDV isolate contained a duplication of the NS3 gene downstream from the original locus. In contrast, no detectable NS2-3 insertions or NS3 gene duplications were observed in the genome of 37 cp isolates. These results demonstrate that processing of NS2-3 without bulk mRNA insertions or NS3 gene duplications seems to be a frequent mechanism leading to NS3 expression and BVDV cytopathology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two recombinant baculoviruses were produced in order to obtain a bovine viral diarrhea virus (BVDV) immunogen: AcNPV/E2 expressing E2 glycoprotein, and AcNPV/E0E1E2 expressing the polyprotein region coding for the three structural proteins of BVDV (E0, E1, and E2). Mice were immunized with Sf9 cells infected with the recombinant baculoviruses in a water in oil formulation and the production of neutralizing antibodies was evaluated. Since E2 elicited higher neutralizing antibody titers than E0-E1-E2 polyprotein, it was selected to immunize cattle. Calves received two doses of recombinant E2 vaccine and were challenged with homologous BVDV 37 days later. The recombinant immunogen induced neutralizing titers which showed a mean value of 1.5 ± 0.27 on the day of challenge and reached a top value of 3.36 ± 0.36, 47 days later (84 days post-vaccination). On the other hand, sera from animals which received mock-infected Sf9 cells did not show neutralizing activity until 25 days post-challenge (62 days post-vaccination), suggesting that these antibodies were produced as a consequence of BVDV challenge. Even when no total protection was observed in cattle, in vitro viral neutralization assays revealed that the recombinant immunogen was able to induce neutralizing antibody synthesis against the homologous strain as well as against heterologous strains in a very efficient way.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic hepatitis B (HBV) and C (HCV) virus infections are the most important factors associated with hepatocellular carcinoma (HCC), but tumor prognosis remains poor due to the lack of diagnostic biomarkers. In order to identify novel diagnostic markers and therapeutic targets, the gene expression profile associated with viral and non-viral HCC was assessed in 9 tumor samples by oligo-microarrays. The differentially expressed genes were examined using a z-score and KEGG pathway for the search of ontological biological processes. We selected a non-redundant set of 15 genes with the lowest P value for clustering samples into three groups using the non-supervised algorithm k-means. Fisher’s linear discriminant analysis was then applied in an exhaustive search of trios of genes that could be used to build classifiers for class distinction. Different transcriptional levels of genes were identified in HCC of different etiologies and from different HCC samples. When comparing HBV-HCC vs HCV-HCC, HBV-HCC/HCV-HCC vs non-viral (NV)-HCC, HBC-HCC vs NV-HCC, and HCV-HCC vs NV-HCC of the 58 non-redundant differentially expressed genes, only 6 genes (IKBKβ, CREBBP, WNT10B, PRDX6, ITGAV, and IFNAR1) were found to be associated with hepatic carcinogenesis. By combining trios, classifiers could be generated, which correctly classified 100% of the samples. This expression profiling may provide a useful tool for research into the pathophysiology of HCC. A detailed understanding of how these distinct genes are involved in molecular pathways is of fundamental importance to the development of effective HCC chemoprevention and treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vaccines were initially developed on an empirical basis, relying mostly on attenuation or inactivation of pathogens. Advances in immunology, molecular biology, biochemistry, genomics, and proteomics have added new perspectives to the vaccinology field. The use of recombinant proteins allows the targeting of immune responses focused against few protective antigens. There are a variety of expression systems with different advantages, allowing the production of large quantities of proteins depending on the required characteristics. Live recombinant bacteria or viral vectors effectively stimulate the immune system as in natural infections and have intrinsic adjuvant properties. DNA vaccines, which consist of non-replicating plasmids, can induce strong long-term cellular immune responses. Prime-boost strategies combine different antigen delivery systems to broaden the immune response. In general, all of these strategies have shown advantages and disadvantages, and their use will depend on the knowledge of the mechanisms of infection of the target pathogen and of the immune response required for protection. In this review, we discuss some of the major breakthroughs that have been achieved using recombinant vaccine technologies, as well as new approaches and strategies for vaccine development, including potential shortcomings and risks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tutkimuksen tavoite on selvittää digitaalisen sisällön ominaisuuksia, jotka vaikuttavat ryhtyvätkö kuluttajat jakamaan, tykkäämään ja kommentoimaan sitä sosiaalisessa mediassa. Tällä pyritään auttamaan yrityksiä ymmärtämään paremmin viraalisuutta, jotta he pystyisivät tuottamaan ja julkaisemaan nettisivuillaan ja sosiaalisessa mediassa parempaa sisältöä, jota kuluttajat jakaisivat enemmän. Tutkimus toteutetaan muodostamalla hypoteeseja mahdollisista ominaisuuksista kirjallisuuden perusteella ja testaamalla niitä regressioanalyyseillä empiirisessä osiossa. Tulokset paljastavat yhdeksän piirrettä, jotka lisäävät viraalisuutta: kiinnostavuus, neutraalisuus, yllättävyys, viihdyttävyys, epäkäytännöllisyys, artikkelin ja Facebook julkaisun pituus, eri sisältö taktiikoiden käyttö (erityisesti blogit ja kuvat lisäävät viraalisuutta) sekä kun mielipidevaikuttaja tai kuuluisuus jakaa sisällön.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The construction of adenovirus vectors for cloning and foreign gene expression requires packaging cell lines that can complement missing viral functions caused by sequence deletions and/or replacement with foreign DNA sequences. In this study, packaging cell lines were designed to provide in trans the missing bovine adenovirus functions, so that recombinant viruses could be generated. Fetal bovine kidney and lUng cells, acquired at the trimester term from a pregnant cow, were tranfected with both digested wild type BAV2 genomic DNA and pCMV-EI. The plasmid pCMV-EI was specifically constructed to express El of BAV2 under the control of the cytomegalovirus enhancer/promoter (CMV). Selection for "true" transformants by continuous passaging showed no success in isolating immortalised cells, since the cells underwent crisis resulting in complete cell death. Moreover, selection for G418 resistance, using the same cells, also did not result in the isolation of an immortalised cell line and the same culture-collapse event was observed. The lack of success in establishing an immortalised cell line from fetal tissue prompted us to transfect a pre-established cell line. We began by transfecting MDBK (Mardin-Dardy bovine kidney) cells with pCMV-El-neo, which contain the bacterial selectable marker neo gene. A series of MDBK-derived cell lines, that constitutively express bovine adenoviral (BAV) early region 1 (El), were then isolated. Cells selected for resistance to the drug G418 were isolated collectively for full characterisation to assess their suitability as packaging cell lines. Individual colonies were isolated by limiting dilution and further tested for El expression and efficiency of DNA uptake. Two cell lines, L-23 and L-24, out of 48 generated foci tested positive for £1 expression using Northern Blot analysis. DNA uptake studies, using both lipofectamine and calcium phosphate methods, were performed to compare these cells, their parental MDBK cells, 8 and the unrelated human 293 cells as a benchmark. The results revealed that the new MDBKderived clones were no more efficient than MDBK cells in the transient expression of transfected DNA and that they were inferior to 293 cells, when using lacZ as the reporter gene. In view of the inherently poor transfection efficiency of MDBK cells and their derivatives, a number of other bovine cells were investigated for their potential as packaging cells. The cell line CCL40 was chosen for its high efficiency in DNA uptake and subsequently transfected with the plasmid vector pCMV El-neo. By selection with the drug G418, two cell lines were isolated, ProCell 1 and ProCell 2. These cell lines were tested for El expression, permissivity to BAV2 and DNA uptake efficiency, revealing a DNA uptake efficiency of 37 % , comparable to that of CCL40. Attempts to rescue BAV2 mutants carrying the lacZ gene in place of £1 or £3 were carried out by co-transfecting wild type viral DNA with either the plasmid pdlElE-Z (which contains BAV2 sequences from 0% to 40.4% with the lacZ gene in place of the £1 region from 1.1% to 8.25%) or with the plasmid pdlE3-5-Z (which contains BAV2 sequences from 64.8% to 100% with the lacZ gene in place of the E3 region from 75.8% to 81.4%). These cotransfections did not result in the generation of a viral mutant. The lack of mutant generation was thought to be caused by the relative inefficiency ofDNA uptake. Consequently, cosBAV2, a cosmid vector carrying the BAV2 genome, was modified to carry the neo reporter gene in place of the £3 region from 75.8% to 81.4%. The use of a single cosmid vector earring the whole genome would eliminate the need for homologous recombination in order to generate a viral vector. Unfortunately, the transfection of cosBAV2- neo also did not result in the generation of a viral mutant. This may have been caused by the size of the £3 deletion, where excess sequences that are essential to the virus' survival might have been deleted. As an extension to this study, the spontaneous E3 deletion, accidently discovered in our viral stock, could be used as site of foreign gene insertion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human adenoviruses (Ads), members of the family adenoviridae, are medium-sized DNA viruses which have been used as valuable research tools for the study of RNA processing, oncogenic transformation, and for the development of viral vectors for use in gene delivery and immunization technology. The left 12% of the linear Ad genollle codes for products which are necessary for the efficient replication of the virus, as well as being responsible for the forlllation of tumors in animallllodels. The establishlllent of the 293 cell line, by immortalization of human embryonic kidney cells with th~ E1 region of Ad type S (AdS), has facilitated extensive manipulation of the Ads and the development of recombinant Ad vectors. The study of bovine adenoviruses (BAVs), which cause mild respiratory and gastrointestinal infections in cattle has, on the other hand, been limited primarily to that of infectivity, immunology and clinicallllanifestations. As a result, any potential as gene delivery vehicles has not yet been realized. Continued research into the molecular biolo~gy of BAVs and the development of recolllbinant vectors would benefit from the development of a cell line analogous to that of the 293 cells. In an attelllpt to establish such a cell line, the recombinant plaslllid pKC-neo was constructed, containing the left 0-19.7% of the BAV type 3 (BAV3) genome, and the selectable marker for resistance to the aminoglycoside G418, a neomycin derivative. The plasmid construct was then used to transfect both the Madin-Darby bovine kidney (MDBK) -iicell line and primary bovine lung cells, after which G418-resistant foci were selected for analysis. Two cell lines, E61 (MDBK) and E24 (primary lung), were subsequently selected and analysed for DNA content, revealing the presence of the pKC-neo sequences in their respective genomes. In addition, BAV3 RNA transcripts were detected in the E61 cells. Although the presence of E1 products has yet to be confirmed in both cell lines, the E24 cells exhibit a phenotype characteristic of partial transformation by E1. The apparent immortalization of the primary lung cells will permit exploitation of their ability to take up exogenous DNA at high efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

STOBBS, Lorne,W ABSTRACT Biochemical and Histological Investigations of viral localisation in the hypersensitive reaction of Phaseolus vulgaris L. var Pinto to tobacco mosaic virus infection. The infection of Phaseolus vulgaris L. var Pinto with tobacco mosaic virus (TMV) results in the production of distinct necrotic lesions confining the virus to restricted areas of the leaf surface. Biochemical and histological changes in the leaf tissue as a result of infection have been described. Trace accumulations of fluorescent metabolites, detected prior to lesion expression represent metabolites produced, by the cell in response to virus infection. These substances, are considered to undergo oxidation and in diffusing into adjacent cells, react with cellular constituents causing the death of these cells. Such cellular necrosis in advance of infection effectively limits virus spread. Chromatographic studies on extracts from TMV infected Pinto bean leaf tissue suggests that a number of extra-fluorescent metabolites produced on lesion'expression represent end products of phenolic oxidation r,eactionsoccurring earlier in these cells. Inhibition of phenolic oxidation by ascorbate infiltration or elevated temperature treatment resulted in the absence of extra-fluorescent metabolites and the continued movement of virus in the absence of necrosis. Further studies with i ascorbate infiltration indicated that irreversible necrotic events were determined as early as 12 tci 18 hrs after viral inoculation. Histochemical tests indicated that callose formation was initiated at this time, and occurred in response to necrotisation. Inhibition of necrosis by either ascorbate infiltration or elevated temp8rature treatment resulted in the absence of callose deposition. Scanning electron'micrographs of infected tissue revealed severe epidermal and palisade cell damage. Histochemical tests indicated extensive callose formation in cells bordering the lesion, and suggested the role of callose iTh the blockage of intercellular connections limiting virus movement. The significance of these cellular changes is discussed. ii

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis (Maestría en Ciencias con Orientación Terminal en Biología Molecular e Ingeniería Genética) UANL, 2011.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Affiliation: Zhujun Ao, Éric Cohen & Xiaojian Yao : Département de microbiologie et immunologie, Faculté de Médecine, Université de Montréal