868 resultados para Vertical crustal motion
Resumo:
El treball desenvolupat en aquesta tesi aprofundeix i aporta solucions innovadores en el camp orientat a tractar el problema de la correspondència en imatges subaquàtiques. En aquests entorns, el que realment complica les tasques de processat és la falta de contorns ben definits per culpa d'imatges esborronades; un fet aquest que es deu fonamentalment a il·luminació deficient o a la manca d'uniformitat dels sistemes d'il·luminació artificials. Els objectius aconseguits en aquesta tesi es poden remarcar en dues grans direccions. Per millorar l'algorisme d'estimació de moviment es va proposar un nou mètode que introdueix paràmetres de textura per rebutjar falses correspondències entre parells d'imatges. Un seguit d'assaigs efectuats en imatges submarines reals han estat portats a terme per seleccionar les estratègies més adients. Amb la finalitat d'aconseguir resultats en temps real, es proposa una innovadora arquitectura VLSI per la implementació d'algunes parts de l'algorisme d'estimació de moviment amb alt cost computacional.
Resumo:
Na fábrica da EPAL, em Vale da Pedra, o risco de queda em altura no acesso vertical a espaços confinados, foi avaliado como sendo aceitável mediante a adoção de medidas de controlo que não existiam, ou que não eram adequadas, ou ainda que não eram utilizadas. Para responder a este problema, foi concebido, desenvolvido e ensaiado um inovador dispositivo portátil anti-queda. Este previne a queda no acesso entre o pavimento e os primeiros degraus de aberturas verticais conducentes a espaços confinados. Além da função preventiva, também pode fazer parte da proteção anti-queda, como ponto de ancoragem dos equipamentos de proteção contra quedas. Os ensaios realizados revelaram que, em comparação com as alternativas pré-fabricadas disponíveis, esta solução é mais adequada para prevenir quedas, por se adaptar a múltiplas configurações de acesso, com um dispositivo relativamente leve, fácil de transportar e de aplicar, estável e resistente. / In EPAL factory in Vale da Pedra, the risk of falling from a height in the vertical access to confined spaces, was evaluated as being acceptable by the adoption of control measures that did not exist, or were not suitable, or were not used. To respond to this problem, an innovative portable anti-falling device was designed, developed and tested. This prevents falling in access between the ground and the first steps of vertical openings leading to confined spaces. In addition to the preventive function, it can also be part of the fall-arrest protection, as anchor point of fall protection equipment. The tests revealed that, in comparison with the prefabricated alternatives available, this solution is best suited to prevent falls, due to its adaptability to multiple access settings, with a relatively light device, easy to carry and to use, stable and resistant.
Resumo:
The goal of the study was to identify what effect headshaking in the horizontal plane has on Computerized Dynamic Posturography results in normals and patients with unilateral vestibular dysfunction. Additionally, the results were compared to results of the dynamic subjective visual vertical test.
Resumo:
The purpose of this study was to evaluate discrimination of angular velocity in individuals with normal vestibular function using a newly developed adaptive psychophysical measure. Vestibular psychophysical testing may complement existing clinical measures in diagnosing and treating patients with imbalance.
Resumo:
A combination of satellite data, reanalysis products and climate models are combined to monitor changes in water vapour, clear-sky radiative cooling of the atmosphere and precipitation over the period 1979-2006. Climate models are able to simulate observed increases in column integrated water vapour (CWV) with surface temperature (Ts) over the ocean. Changes in the observing system lead to spurious variability in water vapour and clear-sky longwave radiation in reanalysis products. Nevertheless all products considered exhibit a robust increase in clear-sky longwave radiative cooling from the atmosphere to the surface; clear-sky longwave radiative cooling of the atmosphere is found to increase with Ts at the rate of ~4 Wm-2 K-1 over tropical ocean regions of mean descending vertical motion. Precipitation (P) is tightly coupled to atmospheric radiative cooling rates and this implies an increase in P with warming at a slower rate than the observed increases in CWV. Since convective precipitation depends on moisture convergence, the above implies enhanced precipitation over convective regions and reduced precipitation over convectively suppressed regimes. To quantify this response, observed and simulated changes in precipitation rate are analysed separately over regions of mean ascending and descending vertical motion over the tropics. The observed response is found to be substantially larger than the model simulations and climate change projections. It is currently not clear whether this is due to deficiencies in model parametrizations or errors in satellite retrievals.
Resumo:
A climatology of almost 700 extratropical cyclones is compiled by applying an automated feature tracking algorithm to a database of objectively identified cyclonic features. Cyclones are classified according to the relative contributions to the midlevel vertical motion of the forcing from upper and lower levels averaged over the cyclone intensification period (average U/L ratio) and also by the horizontal separation between their upper-level trough and low-level cyclone (tilt). The frequency distribution of the average U/L ratio of the cyclones contains two significant peaks and a long tail at high U/L ratio. Although discrete categories of cyclones have not been identified, the cyclones comprising the peaks and tail have characteristics that have been shown to be consistent with the type A, B, and C cyclones of the threefold classification scheme. Using the thresholds in average U/L ratio determined from the frequency distribution, type A, B, and C cyclones account for 30\%, 38\%, and 32\% of the total number of cyclones respectively. Cyclones with small average U/L ratio are more likely to be developing cyclones (attain a relative vorticity $\ge 1.2 \times 10^{-4} \mbox{s}^{-1}$) whereas cyclones with large average U/L ratio are more likely to be nondeveloping cyclones (60\% of type A cyclones develop whereas 31\% of type C cyclones develop). Type A cyclogenesis dominates in the development region East of the Rockies and over the gulf stream, type B cyclogenesis dominates in the region off the East coast of the USA, and type C cyclogenesis is more common over the oceans in regions of weaker low-level baroclinicity.
Resumo:
Many algorithms have been developed to achieve motion segmentation for video surveillance. The algorithms produce varying performances under the infinite amount of changing conditions. It has been recognised that individually these algorithms have useful properties. Fusing the statistical result of these algorithms is investigated, with robust motion segmentation in mind.
Resumo:
The atmospheric circulation changes predicted by climate models are often described using sea level pressure, which generally shows a strengthening of the mid-latitude westerlies. Recent observed variability is dominated by the Northern Annular Mode (NAM) which is equivalent barotropic, so that wind variations of the same sign are seen at all levels. However, in model predictions of the response to anthropogenic forcing, there is a well-known enhanced warming at low levels over the northern polar cap in winter. This means that there is a strong baroclinic component to the response. The projection of the response onto a NAM-like zonal index varies with height. While at the surface most models project positively onto the zonal index, throughout most of the depth of the troposphere many of the models give negative projections. The response to anthropogenic forcing therefore has a distinctive baroclinic signature which is very different to the NAM