895 resultados para Vehicle Operating Performance Modeling.
Resumo:
This paper deals with results of a research and development (R&D) project in cooperation with Electric Power Distribution Company in São Paulo (Brazil) regarding the development and experimental analysis of a new concept of power drive system suitable for application in traction systems of electrical vehicles pulled by electrical motors, which can be powered by urban DC or AC distribution networks. The proposed front-end structure is composed by five boost power cells in interleaving connection, operating in discontinuous conduction mode as AC-DC converter, or as DC-DC converter, in order to provide the proper DC output voltage range required by DC or AC adjustable speed drivers. Therefore, when supplied by single-phase AC distribution networks, and operating as AC-DC converter, it is capable to provide high power factor, reduced harmonic distortion in the input current, complying with the restrictions imposed by the IEC 61000-3-4 standards resulting in significant improvements for the trolleybuses systems efficiency and for the urban distribution network costs. Considering the compliance with input current restrictions imposed by IEC 61000-3-4 standards, two digital control strategies were evaluated. The digital controller has been implemented using a low cost FPGA (XC3S200) and developed totally using a hardware description language VHDL and fixed point arithmetic. Experimental results from a 15 kW low power scale prototype operating in DC and AC conditions are presented, in order to verify the feasibility and performance of the proposed system. © 2009 IEEE.
Resumo:
The advance in the graphic computer's techniques and computer's capacity of processing made possible applications like the human anatomic structures modeling, in order to investigate diseases, surgical planning or even provide images for training of Computer Aided Diagnosis (CAD). On this context, this work exhibits an anatomical model of cardiac structures represented in a tridimensional environment. The model was represented with geometrical elements and has anatomical details, as the different tunics that compose the cardiac wall and measures that preserves the characteristics found on real structures. The validation of the anatomical model was made through quantitative comparations with real structures measures, available on specialized literature. The results obtained, evaluated by two specialists, are compatible with real anatomies, respecting the anatomical particularities. This degree of representation will allow the verification of the influence of radiological parameters, morphometric peculiarities and stage of the cardiac diseases on the quality of the images, as well as on the performance of the CAD. © 2010 IEEE.
Resumo:
This paper presents a comparative analysis between the experimental characterization and the numerical simulation results for a three-dimensional FCC photonic crystal (PhC) based on a self-assembly synthesis of monodispersive latex spheres. Specifically, experimental optical characterization, by means of reflectance measurements under variable angles over the lattice plane family [1,1, 1], are compared to theoretical calculations based on the Finite Di®erence Time Domain (FDTD) method, in order to investigate the correlation between theoretical predictions and experimental data. The goal is to highlight the influence of crystal defects on the achieved performance.
Resumo:
The applications of the Finite Element Method (FEM) for three-dimensional domains are already well documented in the framework of Computational Electromagnetics. However, despite the power and reliability of this technique for solving partial differential equations, there are only a few examples of open source codes available and dedicated to the solid modeling and automatic constrained tetrahedralization, which are the most time consuming steps in a typical three-dimensional FEM simulation. Besides, these open source codes are usually developed separately by distinct software teams, and even under conflicting specifications. In this paper, we describe an experiment of open source code integration for solid modeling and automatic mesh generation. The integration strategy and techniques are discussed, and examples and performance results are given, specially for complicated and irregular volumes which are not simply connected. © 2011 IEEE.
Resumo:
This paper deals with the problem of establishing stabilizing state-dependent switching laws in DC-DC converters operating at continuous conduction mode (CCM) and comparing their performance indexes. Firstly, the nature of the problem is defined, that is, the study of switched affine systems, which may not share a common equilibrium point. The concept of stability is, therefore, broadened. Then, the central theorem is proposed, from which a family of switching laws can be derived, namely the minimum law and the hold state law. Some of these are proved to stabilize the basic DC-DC converters and then, their performances are compared to another law, from a previous work, by simulation, where a great reduction in overshoot is obtained. © 2011 IEEE.
Resumo:
Simulation of large and complex systems, such as computing grids, is a difficult task. Current simulators, despite providing accurate results, are significantly hard to use. They usually demand a strong knowledge of programming, what is not a standard pattern in today's users of grids and high performance computing. The need for computer expertise prevents these users from simulating how the environment will respond to their applications, what may imply in large loss of efficiency, wasting precious computational resources. In this paper we introduce iSPD, iconic Simulator of Parallel and Distributed Systems, which is a simulator where grid models are produced through an iconic interface. We describe the simulator and its intermediate model languages. Results presented here provide an insight in its easy-of-use and accuracy.
Resumo:
This study aimed to assess the performance of International Caries Detection and Assessment System (ICDAS), radiographic examination, and fluorescence-based methods for detecting occlusal caries in primary teeth. One occlusal site on each of 79 primary molars was assessed twice by two examiners using ICDAS, bitewing radiography (BW), DIAGNOdent 2095 (LF), DIAGNOdent 2190 (LFpen), and VistaProof fluorescence camera (FC). The teeth were histologically prepared and assessed for caries extent. Optimal cutoff limits were calculated for LF, LFpen, and FC. At the D 1 threshold (enamel and dentin lesions), ICDAS and FC presented higher sensitivity values (0.75 and 0.73, respectively), while BW showed higher specificity (1.00). At the D 2 threshold (inner enamel and dentin lesions), ICDAS presented higher sensitivity (0.83) and statistically significantly lower specificity (0.70). At the D 3 threshold (dentin lesions), LFpen and FC showed higher sensitivity (1.00 and 0.91, respectively), while higher specificity was presented by FC (0.95), ICDAS (0.94), BW (0.94), and LF (0.92). The area under the receiver operating characteristic (ROC) curve (Az) varied from 0.780 (BW) to 0.941 (LF). Spearman correlation coefficients with histology were 0.72 (ICDAS), 0.64 (BW), 0.71 (LF), 0.65 (LFpen), and 0.74 (FC). Inter- and intraexaminer intraclass correlation values varied from 0.772 to 0.963 and unweighted kappa values ranged from 0.462 to 0.750. In conclusion, ICDAS and FC exhibited better accuracy in detecting enamel and dentin caries lesions, whereas ICDAS, LF, LFpen, and FC were more appropriate for detecting dentin lesions on occlusal surfaces in primary teeth, with no statistically significant difference among them. All methods presented good to excellent reproducibility. © 2012 Springer-Verlag London Ltd.
Resumo:
The purpose of this study was to develop a mucoadhesive stimuli-sensitive drug delivery system for nasal administration of zidovudine (AZT). The system was prepared by formulating a low viscosity precursor of a liquid crystal phase, taking advantage of its lyotropic phase behavior. Flow rheology measurements showed that the formulation composed of PPG-5-CETETH-20, oleic acid and water (55, 30, 15% w/w), denominated P, has Newtonian flow behavior. Polarized light microscopy (PLM) revealed that formulation P is isotropic, whereas its 1:1 (w/w) dilution with artificial nasal mucus (ANM) changed the system to an anisotropic lamellar phase (PD). Oscillatory frequency sweep analysis showed that PD has a high storage modulus (G′) at nasal temperatures. Measurement of the mucoadhesive force against excised porcine nasal mucosa or a mucin disk proved that the transition to the lamellar phase tripled the work of mucoadhesion. Ex vivo permeation studies across porcine nasal mucosa exhibited an 18-fold rise in the permeability of AZT from the formulation. The Weibull mathematical model suggested that the AZT is released by Fickian diffusion mechanisms. Hence, the physicochemical characterization, combined with ex vivo studies, revealed that the PPG-5-CETETH-20, oleic acid, and water formulation could form a mucoadhesive matrix in contact with nasal mucus that promoted nasal absorption of the AZT. For an in vivo assessment, the plasma concentrations of AZT in rats were determined by HPLC method following intravenous and intranasal administration of AZT-loaded P formulation (PA) and AZT solution, respectively, at a dose of 8 mg/kg. The intranasal administration of PA resulted in a fast absorption process (Tmax = 6.7 min). Therefore, a liquid crystal precursor formulation administered by the nasal route might represent a promising novel tool for the systemic delivery of AZT and other antiretroviral drugs. In the present study, the uptake of AZT absorption in the nasal mucosa was demonstrated, providing new foundations for clinical trials in patients with AIDS. © 2012 Elsevier B.V. All rights reserved.
Resumo:
The main objective of this study is to verify the influence of Environmental Management (EM) on Operational Performance (OP) in Brazilian automotive companies, analyzing whether Lean Manufacturing (LM) and Human Resources (HR) interfere in the greening of these companies. Therefore, a conceptual framework listing these concepts was proposed, and three research hypotheses were presented. A questionnaire was elaborated based on this theoretical background and sent to respondents occupying the highest positions in the production/operations areas of Brazilian automotive companies. The data, collected from 75 companies, were analyzed using structural equation modeling. The main results are as follows: (a) the model tested revealed an adequate goodness of fit, showing that overall, the relations proposed between EM and OP and between HR, LM and EM tend to be statistically valid; (b) EM tends to influence OP in a positive and statistically weak manner; (c) LM has a greater influence on EM when compared to the influence HR has over EM; (d) HR has a positive relationship over EM, but the statistical significance of this relationship is less than that of the other evaluated relationships. The originality of this paper lies in its gathering the concepts of EM, LM, HR and OP in a single study, as they generally tend not to be treated jointly. This paper also provided valid empirical evidence for a littlestudied context: the Brazilian automotive sector. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
This work aims to study the thermodynamic, ecological and fluid-dynamic aspects of a circulating fluidized bed gasifier using sugar cane bagasse as biomass, in order to estimate a model of its normal operation. In the initial stage was analysed the composition of biomass selected (sugar cane bagasse) and its lower heating value (LHV) was calculated. The energy balance of the gasifier was done, being the volumetric flow of air, synthesis gas and biomass estimated. Also the power produced by this gasifier was theoretically estimated. Then the circulating fluidized bed gasifier was designed for operation with approximately 100 kg/h of processed biomass. Cross-sectional area of the reactor, feeder size, diameter of the exit zone of the gases and minimum height of the expanded bed were selected. Some bed gasifier hydrodynamic factors were also studied. The minimum fluidization velocity, fluidization terminal velocity, and average fluidizing velocity were calculated, in order to understand the fluid-dynamic behaviour of gasification of this fuel. It was obtained a theoretical model that can support a possible prototype of circulating fluidized bed gasifier biomass. Finally, there were studied the ecological aspects of the gasifier, through an overall methodology. Ecological efficiencies were estimated for two scenarios: first considering the carbon cycle and thereafter disregarding the carbon cycle. In both cases, it can be proved the ecological viability of the project. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a methodology for modeling high intensity discharge lamps based on artificial neural networks. The methodology provides a model which is able to represent the device operating in the frequency of distribution systems, facing events related to power quality. With the aid of a data acquisition system to monitor the laboratory experiment, and using $$\text{ MATLAB }^{\textregistered }$$ software, data was obtained for the training of two neural networks. These neural networks, working together, were able to represent with high fidelity the behavior of a discharge lamp. The excellent performance obtained by these models allowed the simulation of a group of lamps in a distribution system with shorter simulation time when compared to mathematical models. This fact justified the application of this family of loads in electric power systems. The representation of the device facing power quality disturbances also proved to be a useful tool for more complex studies in distribution systems. © 2013 Brazilian Society for Automatics - SBA.
Resumo:
First-principles calculations set the comprehension over performance of novel cathodoluminescence (CL) properties of BaZrO3 prepared through microwave-assisted hydrothermal. Ground (singlet, s*) and excited (singlet s** and triplet t**) electronic states were built from zirconium displacement of 0.2 Å in {001} direction. Each ground and excited states were characterized by the correlation of their corresponding geometry with electronic structures and Raman vibrational frequencies which were also identified experimentally. A kind of optical polarization switching was identified by the redistribution of 4dz2 and 4dxz (Zr) orbitals and 2pz O orbital. As a consequence, asymmetric bending and stretching modes theoretically obtained reveal a direct dependence with their polyhedral intracluster and/or extracluster ZrO6 distortions with electronic structure. Then, CL of the as-synthesized BaZrO3 can be interpreted as a result of stable triplet excited states, which are able to trap electrons, delaying the emission process due to spin multiplicity changes. © 2013 AIP Publishing LLC.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)