1000 resultados para Variation imaginative
Resumo:
In our screening of marine actinomycetes for bioactive principles, three novel antibiotics designated as chandrananimycin A (3c), B (3d) and C (4) were isolated from the culture broth of a marine Actinomadura sp. isolate M045. The structures of the new antibiotics were determined by detailed interpretation of mass, 1 D and 2 D NMR spectra.
Resumo:
The concentrations of five major and 28 trace elements in 35 marine algae collected along the coast of China were determined by instrumental neutron activation analysis. The concentrations of halogens, rare earth elements and many transition metal elements in marine algae are remarkably higher than those in terrestrial plants. The concentration factors for 31 elements in all collected algae were calculated, those for tri- and tetra-valent elements were higher than those of the mono- and di-valent elements in marine algae. The biogeochemical characteristics of inorganic elements in marine algae were investigated. In addition, the seasonal variation of inorganic elements in Sargassum kjellmanianum was also studied. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
ISSR analysis was used to investigate genetic variations of 184 haploid and diploid samples from nine North Atlantic Chondrus crispus Stackhouse populations and one outgroup Yellow Sea Chondrus ocellatus Holmes population. Twenty-two of 50 primers were selected and 163 loci were scored for genetic diversity analysis. Genetic diversity varied among populations, percentage of polymorphic bands (PPB) ranged from 27.0 to 55.8%, H(Nei's genetic diversity) ranged from 0.11 to 0.20 and I(Shannon's information index) ranged from 0.16 to 0.30. Estimators PPB, H and I had similar values in intra-population genetic diversity, regardless of calculation methods. Analysis of molecular variance (AMOVA) apportioned inter-population and intra-population variations for C crispus, showing more genetic variance (56.5%) occurred in intra-population, and 43.5% variation among nine populations. The Mantel test suggested that genetic differentiation between nine C. crispus populations was closely related with geographic distances (R = 0.78, P = 0.002). Results suggest that, on larger distance scale (ca. > 1000 km), ISSR analysis is useful for determining genetic differentiations of C crispus populations including morphologically inseparable haploid and diploid individuals. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A joint oceanographic cruise between the Institute of Oceanography, Chinese Academy of Science and the Department of Oceanography, Seoul National University was carried out in the Yellow Sea during the summer of 1996 to investigate the concentration and particle-size distribution of suspended particulate matter (SPM). The general trends in the surface and bottom waters show that SPM concentrations and particle sizes decreased seawards in both the western (Chinese) and eastern (Korean) coastal regions of the Yellow Sea. In the bottom waters, SPM concentrations were higher and particle sizes were larger along the eastern coast than along the western coast. We suggest this is due to the resuspension of bottom sediments by strong onshore summer typhoons in the southwestern coastal waters of Korea.
Resumo:
Based upon the effect of land-sea interaction on the paleomonsoon variation and the time series of climatic proxy-indicators, the historical Asian monsoon variation over the last 130,000 and 18,000 years has been reconstructed with an emphasis on the basic characteristics of summer monsoon circulation. The monsoon-climatic cycles and associated model of environmental development over the central and eastern China are proposed and the mechanism of paleomonsoon variation of China preliminarily discussed. The variation of East Asian monsoon circulation should be regarded as a regional result of both solar-radiation changes and the global glacial-interglacial cycles. The episodic uplifting of the Qinghai-Xizang Plateau since the late Miocene has to a large extent controlled the forming and evolution of the paleomonsoon circulation of China.
Resumo:
The evolution and variation history of the Tsushima warm current during the late Quaternary was reconstructed based on the quantitative census data of planktonic foraminiferal fauna, together with oxygen and carbon isotope records of mixed layer dweller a ruber and thermocline dweller N. dutertrei in piston core CSH1 and core DGKS9603 collected separately from the Tsushima warm current and the Kuroshio dominated area. The result showed that the Tsushima warm current vanished in the lowstand period during 40-24 cal ka BP, while the Kuroshio still flowed across the Okinawa Trough, arousing strong upwelling in the northern Trough. Meanwhile, the influence of freshwater greatly increased in the northern Okinawa Trough, as the broad East China Sea continental shelf emerged. The freshwater reached its maximum during the last glacial maximum (LGM), when the upwelling obviously weakened for the lowest sea-level and the depression of the Kuroshio. The modern Tsushima warm current began its development since 16 cal ka BP, and the impact of the Kuroshio increased in the middle and northern Okinawa Trough synchronously during the deglaciation and gradually evolved as the main water source of the Tsushima current. The modern Tsushima current finally formed at about 8.5 cal ka BP, since then the circulation structure has been relatively stable. The water of the modern Tsushima current primarily came from the Kuroshio axis. A short-term wiggle of the current occurred at about 3 cal ka BP, probably for the influences from the enhancement of the winter monsoon and the depression of the Kuroshio. The cold water masses greatly strengthened during the wiggle.
Resumo:
A core from the source region of the Kuroshio warm current (east of the Luzon Island) was analyzed using several proxies in order to study the variability of the Western Pacific Warm Pool (WPWP) during the last two glacial-interglacial cycles. Primary productivity (PP) variations were deduced from variations in the coccolith flora. Primary productivity was higher during glacial periods (the end of Marine Isotope Stage [MIS] 3, some periods in MIS 2 and 6), and decreased during interglacial periods (MIS 7, MIS Se and probably MIS 5c-5d), with the lowest PP in MIS 5e. variations in the delta C-13 difference in benthic and bulk carbonate, thus in the vertical gradient of delta C-13 in dissolved inorganic carbon (Delta delta C-13(c). (wuellerstorfi-N. dutertrei) and Delta delta C-13(c.) (wuellerstorfi-coccolith)) Coincided With the PP Changes, showing that export productivity was low during interglacial periods (MIS 7, MIS 5e and Holocene) and high during glacial periods (MIS 6, probably MIS 5c-5d, late MIS 4 and late MIS 3). Comparison of foraminiferal carbonate dissolution indicators and PP changes reveals that nannofossil assemblage in core Ph05-5 is not sensitive to carbonate dissolution intensity. The depth of the thermocline (DOT) was estimated from planktonic forminiferal assemblages, and was relatively greater during interglacial periods (MIS 7, MIS 5e, probably MIS 5c and Holocene) than during glacials (middle MIS 6, probably MIS 5b and 5d, some periods in MIS 4, MIS 3 and MIS 2). Good coherence between the paleoproductivity records and the DOT suggests that the DOT changes could be the primary control factor in changes of paleoproductivity, and the glacial high productivity in the Kuroshio source region could be associated with a global increase of nutrient concentration in the intermediate waters that upwelled into the photic zone. The low CO2 values derived for intervals of high productivity and a relatively shallow DOT suggest that the changes in biological productivity and DOT in the equatorial Pacific could have modified atmospheric CO2 concentrations. High Sea Surface Temperatures (SSTs) during the warm MIS 5e in combination with intensified monsoonal rain fall could have resulted in a more intense stratification of the upper waters, resulting in low nutrient supply to the surface waters and a resulting decrease in productivity. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
An analysis of the water level and current data taken in Qiongzhou Strait in the South China Sea (SCS) over the last 37 years (1963 to 1999) was made to examine the characteristics of tidal waves and residual flow through the strait and their roles in the seasonal variation of the SCS circulation. The observations reveal that Qiongzhou Strait is an area where opposing tidal waves interact and a source of water transport to the Gulf of Beibu (Gulf of Tonkin), SCS. A year-round westward mean flow with a maximum speed of 10-40 cm s(-1) is found in Qiongzhou Strait. This accounts for water transport of 0.2-0.4 Sv and 0.1-0.2 Sv into the Gulf of Beibu in winter-spring and summer-autumn, respectively. The outflow from Qiongzhou Strait may cause up to 44% of the gulf water to be refreshed each season, suggesting that it has a significant impact on the seasonal circulation in the Gulf of Beibu. This finding is in contrast to our current understanding that the seasonal circulation patterns in the South China Sea are primarily driven by seasonal winds. Several numerical experiments were conducted to examine the physical mechanisms responsible for the formation of the westward mean flow in Qiongzhou Strait. The model provides a reasonable simulation of semidiurnal and diurnal tidal waves in the strait and the predicted residual flow generally agrees with the observed mean flow. An analysis of the momentum equations indicates that the strong westward flow is driven mainly by tidal rectification over variable bottom topography. Both observations and modeling suggest that the coastal physical processes associated with tidal rectification and buoyancy input must be taken into account when the mass balance of the SCS circulation is investigated, especially for the regional circulation in the Gulf of Beibu.
Resumo:
An assimilation data set based on the GFDL MOM3 model and the NODC XBT data set is used to examine the circulation in the western tropical Pacific and its seasonal variations. The assimilated and observed velocities and transports of the mean circulation agree well. Transports of the North Equatorial Current (NEC), Mindanao Current (MC), North Equatorial Countercurrent (NECC) west of 140degreesE and Kuroshio origin estimated with the assimilation data display the seasonal cycles, roughly strong in boreal spring and weak in autumn, with a little phase difference. The NECC transport also has a semi-annual fluctuation resulting from the phase lag between seasonal cycles of two tropical gyres' recirculations. Strong in summer during the southeast monsoon period, the seasonal cycle of the Indonesian throughflow (ITF) is somewhat different from those of its upstreams, the MC and New Guinea Coastal Current (NGCC), implying the monsoon's impact on it.
Resumo:
Considering the characteristics of the time and space scales of the eddies we established a quasi-static and quasi-geostrophic model to describe their variation and movement in shelf slope water. The analytical solution revealed the main properties of the variation: slow expansion and fast stagnation processes and the law of the eddy motion affected under the background field. All theoretical results are proved by satellite image measurements.
Resumo:
Previous research has defined the index of the Indian-Pacific thermodynamic anomaly joint mode (IPTAJM) and suggested that the winter IPTAJM has an important impact on summer rainfall over China. However, the possible causes for the interannual and decadal variability of the IPTAJM are still unclear. Therefore, this work investigates zonal displacements of both the western Pacific warm pool (WPWP) and the eastern Indian Ocean warm pool (EIOWP). The relationships between the WPWP and the EIOWP and the IPTAJM are each examined, and then the impacts of the zonal wind anomalies over the equatorial Pacific and Indian Oceans on the IPTAJM are studied. The WPWP eastern edge anomaly displays significant interannual and decadal variability and experienced a regime shift in about 1976 and 1998, whereas the EIOWP western edge exhibits only distinct interannual variability. The decadal variability of the IPTAJM may be mainly caused by both the zonal migration of the WPWP and the 850 hPa zonal wind anomaly over the central equatorial Pacific. On the other hand, the zonal migrations of both the WPWP and the EIOWP and the zonal wind anomalies over the central equatorial Pacific and the eastern equatorial Indian Ocean may be all responsible for the interannual variability of the IPTAJM.
Resumo:
Annual variations of egg production rate (EPR) and clutch size of Calanus sinicus, as well as body size of females (prosome length and dry weight), were investigated at a series of stations in the Southern Yellow Sea by onboard incubation. Calanus sinicus was spawning in all the 11 cruises investigated, and the annual variation of EPR was bimodal. Monthly average EPR was highest from May to July, respectively, 5.97, 5.36 and 6.30 eggs female(-1) d(-1), then decreased dramatically to only 1.37 eggs female(-1) d(-1) in August and attained the lowest 1.07 eggs female(-1) d(-1) in October. In November, average EPR increased again to 4.31 eggs female(-1) d(-1). Seasonal variation of clutch size was similar to EPR, except that it decreased gradually after August rather than dramatically as did EPR. Prosome length of females was maximum in May and minimum in October, but dry weight was highest in November. Monthly average EPR correlated better with prosome length than dry weight, while clutch size was rather determined by dry weight of females. It is suggested that egg production of C. sinicus was active during two discontinuous periods when both surface and bottom temperature fell into its favorite range (i.e. 10-23degreesC), and different reproductive strategies were adopted in these two reproductive peaks: other than the highest EPR, longer prosome length was also achieved by C. sinicus from May to July, while females in November developed shorter bodies but accumulated more energy for reproduction.
Resumo:
Eight cruises were conducted on the south Yellow Sea (SYS) from 1998 to 2005. Variations and the potential ecological risk of heavy metals were studied using the survey data collected during October 2003. The metal content (except for As) was high in the central area where the fine grain size sediments were dominant, and low inshore area where more coarse sediments were present. This suggested that grain size was important in determining distributions of heavy metals. In some local areas, other influencing factors, such as organic content, sedimentation rate, burial efficiency and metal's existing form were discussed. The annual averages of metals showed a stable trend with appreciable fluctuations in 8 years. Using potential ecological risk index (E (RI)) to evaluate the integrated pollution effect of heavy metals, 38.7% of the investigated area was in a moderate degree of contamination, while 77.8% was under moderate ecological risk. However, no distinct correlation was found between E (RI) and plankton biomass. In conclusion, the sediment quality of SYS was good, and the ecological risk was low in general.