932 resultados para VIRAL-INFECTION
Resumo:
Initiation of antiretroviral therapy during the earliest stages of HIV-1 infection may limit the seeding of a long-lasting viral reservoir, but long-term effects of early antiretroviral treatment initiation remain unknown. Here, we analyzed immunological and virological characteristics of nine patients who started antiretroviral therapy at primary HIV-1 infection and remained on suppressive treatment for >10 years; patients with similar treatment duration but initiation of suppressive therapy during chronic HIV-1 infection served as controls. We observed that independently of the timing of treatment initiation, HIV-1 DNA in CD4 T cells decayed primarily during the initial 3 to 4 years of treatment. However, in patients who started antiretroviral therapy in early infection, this decay occurred faster and was more pronounced, leading to substantially lower levels of cell-associated HIV-1 DNA after long-term treatment. Despite this smaller size, the viral CD4 T cell reservoir in persons with early treatment initiation consisted more dominantly of the long-lasting central-memory and T memory stem cells. HIV-1-specific T cell responses remained continuously detectable during antiretroviral therapy, independently of the timing of treatment initiation. Together, these data suggest that early HIV-1 treatment initiation, even when continued for >10 years, is unlikely to lead to viral eradication, but the presence of low viral reservoirs and durable HIV-1 T cell responses may make such patients good candidates for future interventional studies aiming at HIV-1 eradication and cure. IMPORTANCE: Antiretroviral therapy can effectively suppress HIV-1 replication to undetectable levels; however, HIV-1 can persist despite treatment, and viral replication rapidly rebounds when treatment is discontinued. This is mainly due to the presence of latently infected CD4 T cells, which are not susceptible to antiretroviral drugs. Starting treatment in the earliest stages of HIV-1 infection can limit the number of these latently infected cells, raising the possibility that these viral reservoirs are naturally eliminated if suppressive antiretroviral treatment is continued for extremely long periods of time. Here, we analyzed nine patients who started on antiretroviral therapy within the earliest weeks of the disease and continued treatment for more than 10 years. Our data show that early treatment accelerated the decay of infected CD4 T cells and led to very low residual levels of detectable HIV-1 after long-term therapy, levels that were otherwise detectable in patients who are able to maintain a spontaneous, drug-free control of HIV-1 replication. Thus, long-term antiretroviral treatment started during early infection cannot eliminate HIV-1, but the reduced reservoirs of HIV-1 infected cells in such patients may increase their chances to respond to clinical interventions aiming at inducing a drug-free remission of HIV-1 infection.
Resumo:
Mouse mammary tumor virus is known to infect newborn mice via mother's milk. A proposed key step for viral spread to the mammary gland is by the infection of lymphocytes. We show here that although in suckling mice retroviral proteins are found in all epithelial cells of the gut, viral DNA is exclusively detectable in the Peyer's patches. As early as 5 d after birth the infection leads to a superantigen response in the Peyer's patches but not in other lymphoid organs draining the intestine. Viral DNA can be detected before the superantigen response and becomes first evident in the Peyer's patches followed by mesenteric lymph nodes and finally all lymphoid organs.
Resumo:
Dendritic cells (DCs) are essential in order to combat invading viruses and trigger antiviral responses. Paradoxically, in the case of HIV-1, DCs might contribute to viral pathogenesis through trans-infection, a mechanism that promotes viral capture and transmission to target cells, especially after DC maturation. In this review, we highlight recent evidence identifying sialyllactose-containing gangliosides in the viral membrane and the cellular lectin Siglec-1 as critical determinants for HIV-1 capture and storage by mature DCs and for DC-mediated trans-infection of T cells. In contrast, DC-SIGN, long considered to be the main receptor for DC capture of HIV-1, plays a minor role in mature DC-mediated HIV-1 capture and trans-infection.
Resumo:
Major advances in the understanding of the molecular biology of hepatitis C virus (HCV) have been made recently. While the chimpanzee is the only established animal model of HCV infection, several in vivo and in vitro models have been established that allow us to study various aspects of the viral life cycle. In particular, the replicon system and the production of recombinant infectious virions revolutionized the investigation of HCV-RNA replication and rendered all steps of the viral life cycle, including entry and release of viral particles, amenable to systematic analysis. In the following we will review the different in vivo and in vitro models of HCV infection.
Resumo:
A crucial step in the arenavirus life cycle is the biosynthesis of the viral envelope glycoprotein (GP) responsible for virus attachment and entry. Processing of the GP precursor (GPC) by the cellular proprotein convertase site 1 protease (S1P), also known as subtilisin-kexin-isozyme 1 (SKI-1), is crucial for cell-to-cell propagation of infection and production of infectious virus. Here, we sought to evaluate arenavirus GPC processing by S1P as a target for antiviral therapy using a recently developed peptide-based S1P inhibitor, decanoyl (dec)-RRLL-chloromethylketone (CMK), and the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV). To control for off-target effects of dec-RRLL-CMK, we employed arenavirus reverse genetics to introduce a furin recognition site into the GPC of LCMV. The rescued mutant virus grew to normal titers, and the processing of its GPC critically depended on cellular furin, but not S1P. Treatment with the S1P inhibitor dec-RRLL-CMK resulted in specific blocking of viral spread and virus production of LCMV. Combination of the protease inhibitor with ribavirin, currently used clinically for treatment of human arenavirus infections, resulted in additive drug effects. In cells deficient in S1P, the furin-dependent LCMV variant established persistent infection, whereas wild-type LCMV underwent extinction without the emergence of S1P-independent escape variants. Together, the potent antiviral activity of an inhibitor of S1P-dependent GPC cleavage, the additive antiviral effect with ribavirin, and the low probability of emergence of S1P-independent viral escape variants make S1P-mediated GPC processing by peptide-derived inhibitors a promising strategy for the development of novel antiarenaviral drugs.
Resumo:
Initial non-inflammatory demyelination in canine distemper virus infection (CDV) develops against a background of severe immunosuppression and is therefore, thought to be virus-induced. However, recently we found a marked invasion of T cells throughout the central nervous system (CNS) in dogs with acute distemper despite drastic damage to the immune system. In the present study, this apparent paradox was further investigated by immunophenotyping of lymphocytes, following experimental CDV challenge in vaccinated and non-vaccinated dogs. In contrast to CDV infected, unprotected dogs, vaccinated dogs did not become immunosuppressed and exhibited a strong antiviral immune response following challenge with virulent CDV. In unprotected dogs rapid and drastic lymphopenia was initially due to depletion of T cells. In peripheral blood, CD4(+) T cells were more sensitive and depleted earlier and for a longer time than CD8(+) cells which recovered soon. In the cerebrospinal fluid (CSF) we could observe an increase in the T cell to B cell and CD8(+) to CD4(+) ratios. Thus, partial protection of the CD8(+) cell population could explain why part of the immune function in acute distemper is preserved. As found earlier, T cells invaded the CNS parenchyma in these dogs but also in the protected challenged dogs, which did not develop any CNS disease at all. Since markers of T cell activation were upregulated in both groups of animals, this phenomenon could in part be related to non-specific penetration of activated T cells through the blood brain barrier. However, in diseased animals much larger numbers of T cells were found in the CNS than in the protected dogs, suggesting that massive invasion of T cells in the brain requires CDV expression in the CNS.
Resumo:
The laboratory tests currently available to the clinician for day-to-day management of HIV infection are generally limited to the measurement of the viral load and of the CD4 cell count. More recently, analysis of drug resistance and of plasma drug levels have been added to the monitoring armamentarium. There are, however, numerous other techniques currently available to researchers that may in the future be incorporated into clinical routine. These include the analysis of human and viral genetic determinants of disease evolution, detailed analyses of immune recovery and reserve, pharmacogenetic determinants of treatment response, and toxicity. These approaches may in the future provide highly individualized disease management.
Resumo:
Background In the Strategies for Management of Anti-Retroviral Therapy trial, all-cause mortality was higher for participants randomized to intermittent, CD4-guided antiretroviral treatment (ART) (drug conservation [DC]) than continuous ART (viral suppression [VS]). We hypothesized that increased HIV-RNA levels following ART interruption induced activation of tissue factor pathways, thrombosis, and fibrinolysis. Methods and Findings Stored samples were used to measure six biomarkers: high sensitivity C-reactive protein (hsCRP), interleukin-6 (IL-6), amyloid A, amyloid P, D-dimer, and prothrombin fragment 1þ2. Two studies were conducted: (1) a nested case-control study for studying biomarker associations with mortality, and (2) a study to compare DC and VS participants for biomarker changes. For (1), markers were determined at study entry and before death (latest level) for 85 deaths and for two controls (n¼170) matched on country, age, sex, and date of randomization. Odds ratios (ORs) were estimated with logistic regression. For each biomarker, each of the three upper quartiles was compared to the lowest quartile. For (2), the biomarkers were assessed for 249 DC and 250 VS participants at study entry and 1 mo following randomization. Higher levels of hsCRP, IL-6, and D-dimer at study entry were significantly associated with an increased risk of all-cause mortality. Unadjusted ORs (highest versus lowest quartile) were 2.0 (95% confidence interval [CI], 1.0-4.1; p¼0.05), 8.3 (95% CI, 3.3-20.8; p , 0.0001), and 12.4 (95% CI, 4.2-37.0; p , 0.0001), respectively. Associations were significant after adjustment, when the DC and VS groups were analyzed separately, and when latest levels were assessed. IL-6 and D-dimer increased at 1 mo by 30% and 16% in the DC group and by 0% and 5% in the VS group (p , 0.0001 for treatment difference for both biomarkers); increases in the DC group were related to HIV-RNA levels at 1 mo (p , 0.0001). In an expanded case-control analysis (four controls per case), the OR (DC/VS) for mortality was reduced from 1.8 (95% CI, 1.1-3.1; p¼0.02) to 1.5 (95% CI, 0.8-2.8) and 1.4 (95% CI, 0.8-2.5) after adjustment for latest levels of IL-6 and D-dimer, respectively. Conclusions IL-6 and D-dimer were strongly related to all-cause mortality. Interrupting ART may further increase the risk of death by raising IL-6 and D-dimer levels. Therapies that reduce the inflammatory response to HIV and decrease IL-6 and D-dimer levels may warrant investigation.
Resumo:
Measles, caused by measles virus (MV), is a highly contagious viral disease causing severe respiratory infection and a typical rash. Despite the availability of a protective vaccine, measles is still the leading vaccine-preventable cause of childhood mortality worldwide. The high mortality associated with the disease is mainly due to an increased susceptibility to secondary infections during the period of immunosuppression that continues for several weeks after recovery. The present study was undertaken to elucidate the role of cytoskeletal components in the regulation of MV infection. The most interesting finding was that MV replication was activated in unstimulated peripheral blood mononuclear cells (PBMC) when globular actin was converted into the filamentous form with jasplakinolide. This provides a new aspect in our understanding of MV infection in PBMC. In the second part of the thesis we investigated MV-induced structural changes of cellular nuclear matrix, which is a proteinaceous framework of the nucleus similar to the cytoskeleton in the cytoplasm. We showed that cleavage of nuclear markers was virusspecific and a general caspase inhibitor rescued MV-infected cells from cell death. Furthermore, we studied MV-induced innate immune mechanisms in lung epithelial and endothelial cells. Our results showed that MV infection resulted in activation of the double stranded RNA (dsRNA) binding molecules melanoma differentiation-associated gene 5 (mda-5), retinoic acid inducible gene I (RIG-I), and toll-like receptor 3 (TLR3) gene expression, followed by high expression of antiviral cytokine mRNA.
Resumo:
BACKGROUND: The primary analysis of the FLAMINGO study at 48 weeks showed that patients taking dolutegravir once daily had a significantly higher virological response rate than did those taking ritonavir-boosted darunavir once daily, with similar tolerability. We present secondary efficacy and safety results analysed at 96 weeks. METHODS: FLAMINGO was a multicentre, open-label, phase 3b, non-inferiority study of HIV-1-infected treatment-naive adults. Patients were randomly assigned (1:1) to dolutegravir 50 mg or darunavir 800 mg plus ritonavir 100 mg, with investigator-selected combination tenofovir and emtricitabine or combination abacavir and lamivudine background treatment. The main endpoints were plasma HIV-1 RNA less than 50 copies per mL and safety. The non-inferiority margin was -12%. If the lower end of the 95% CI was greater than 0%, then we concluded that dolutegravir was superior to ritonavir-boosted darunavir. This trial is registered with ClinicalTrials.gov, number NCT01449929. FINDINGS: Of 595 patients screened, 488 were randomly assigned and 484 included in the analysis (242 assigned to receive dolutegravir and 242 assigned to receive ritonavir-boosted darunavir). At 96 weeks, 194 (80%) of 242 patients in the dolutegravir group and 164 (68%) of 242 in the ritonavir-boosted darunavir group had HIV-1 RNA less than 50 copies per mL (adjusted difference 12·4, 95% CI 4·7-20·2; p=0·002), with the greatest difference in patients with high viral load at baseline (50/61 [82%] vs 32/61 [52%], homogeneity test p=0·014). Six participants (three since 48 weeks) in the dolutegravir group and 13 (four) in the darunavir plus ritonavir group discontinued because of adverse events. The most common drug-related adverse events were diarrhoea (23/242 [10%] in the dolutegravir group vs 57/242 [24%] in the darunavir plus ritonavir group), nausea (31/242 [13%] vs 34/242 [14%]), and headache (17/242 [7%] vs 12/242 [5%]). INTERPRETATION: Once-daily dolutegravir is associated with a higher virological response rate than is once-daily ritonavir-boosted darunavir. Dolutegravir compares favourably in efficacy and safety to a boosted darunavir regimen with nucleoside reverse transcriptase inhibitor background treatment for HIV-1-infected treatment-naive patients. FUNDING: ViiV Healthcare and Shionogi & Co.
Resumo:
Despite the overwhelming benefits of antiretroviral therapy (ART) in curtailing viral load in HIV-infected individuals, ART does not fully restore cellular and humoral immunity. HIV-infected individuals under ART show reduced responses to vaccination and infections and are unable to mount an effective antiviral immune response upon ART cessation. Many factors contribute to these defects, including persistent inflammation, especially in lymphoid tissues, where T follicular helper (Tfh) cells instruct and help B cells launch an effective humoral immune response. In this study we investigated the phenotype and function of circulating memory Tfh cells as a surrogate of Tfh cells in lymph nodes and found significant impairment of this cell population in chronically HIV-infected individuals, leading to reduced B cell responses. We further show that these aberrant memory Tfh cells exhibit an IL-2-responsive gene signature and are more polarized toward a Th1 phenotype. Treatment of functional memory Tfh cells with IL-2 was able to recapitulate the detrimental reprogramming. Importantly, this defect was reversible, as interfering with the IL-2 signaling pathway helped reverse the abnormal differentiation and improved Ab responses. Thus, reversible reprogramming of memory Tfh cells in HIV-infected individuals could be used to enhance Ab responses. Altered microenvironmental conditions in lymphoid tissues leading to altered Tfh cell differentiation could provide one explanation for the poor responsiveness of HIV-infected individuals to new Ags. This explanation has important implications for the development of therapeutic interventions to enhance HIV- and vaccine-mediated Ab responses in patients under ART.
Resumo:
BACKGROUND: Antiretroviral regimens containing tenofovir disoproxil fumarate have been associated with renal toxicity and reduced bone mineral density. Tenofovir alafenamide is a novel tenofovir prodrug that reduces tenofovir plasma concentrations by 90%, thereby decreasing off-target side-effects. We aimed to assess whether efficacy, safety, and tolerability were non-inferior in patients switched to a regimen containing tenofovir alafenamide versus in those remaining on one containing tenofovir disoproxil fumarate. METHODS: In this randomised, actively controlled, multicentre, open-label, non-inferiority trial, we recruited HIV-1-infected adults from Gilead clinical studies at 168 sites in 19 countries. Patients were virologically suppressed (HIV-1 RNA <50 copies per mL) with an estimated glomerular filtration rate of 50 mL per min or greater, and were taking one of four tenofovir disoproxil fumarate-containing regimens for at least 96 weeks before enrolment. With use of a third-party computer-generated sequence, patients were randomly assigned (2:1) to receive a once-a-day single-tablet containing elvitegravir 150 mg, cobicistat 150 mg, emtricitabine 200 mg, and tenofovir alafenamide 10 mg (tenofovir alafenamide group) or to carry on taking one of four previous tenofovir disoproxil fumarate-containing regimens (tenofovir disoproxil fumarate group) for 96 weeks. Randomisation was stratified by previous treatment regimen in blocks of six. Patients and treating physicians were not masked to the assigned study regimen; outcome assessors were masked until database lock. The primary endpoint was the proportion of patients who received at least one dose of study drug who had undetectable viral load (HIV-1 RNA <50 copies per mL) at week 48. The non-inferiority margin was 12%. This study was registered with ClinicalTrials.gov, number NCT01815736. FINDINGS: Between April 12, 2013 and April 3, 2014, we enrolled 1443 patients. 959 patients were randomly assigned to the tenofovir alafenamide group and 477 to the tenofovir disoproxil fumarate group. Viral suppression at week 48 was noted in 932 (97%) patients assigned to the tenofovir alafenamide group and in 444 (93%) assigned to the tenofovir disoproxil fumarate group (adjusted difference 4·1%, 95% CI 1·6-6·7), with virological failure noted in ten and six patients, respectively. The number of adverse events was similar between the two groups, but study drug-related adverse events were more common in the tenofovir alafenamide group (204 patients [21%] vs 76 [16%]). Hip and spine bone mineral density and glomerular filtration were each significantly improved in patients in the tenofovir alafenamide group compared with those in the tenofovir disoproxil fumarate group. INTERPRETATION: Switching to a tenofovir alafenamide-containing regimen from one containing tenofovir disoproxil fumarate was non-inferior for maintenance of viral suppression and led to improved bone mineral density and renal function. Longer term follow-up is needed to better understand the clinical impact of these changes. FUNDING: Gilead Sciences.
Resumo:
Infectious diseases after solid organ transplantation (SOT) are a significant cause of morbidity and reduced allograft and patient survival; however, the influence of infection on the development of chronic allograft dysfunction has not been completely delineated. Some viral infections appear to affect allograft function by both inducing direct tissue damage and immunologically related injury, including acute rejection. In particular, this has been observed for cytomegalovirus (CMV) infection in all SOT recipients and for BK virus infection in kidney transplant recipients, for community-acquired respiratory viruses in lung transplant recipients, and for hepatitis C virus in liver transplant recipients. The impact of bacterial and fungal infections is less clear, but bacterial urinary tract infections and respiratory tract colonization by Pseudomonas aeruginosa and Aspergillus spp appear to be correlated with higher rates of chronic allograft dysfunction in kidney and lung transplant recipients, respectively. Evidence supports the beneficial effects of the use of antiviral prophylaxis for CMV in improving allograft function and survival in SOT recipients. Nevertheless, there is still a need for prospective interventional trials assessing the potential effects of preventive and therapeutic strategies against bacterial and fungal infection for reducing or delaying the development of chronic allograft dysfunction.
Resumo:
Dendritic cells (DCs) are essential in order to combat invading viruses and trigger antiviral responses. Paradoxically, in the case of HIV-1, DCs might contribute to viral pathogenesis through trans-infection, a mechanism that promotes viral capture and transmission to target cells, especially after DC maturation. In this review, we highlight recent evidence identifying sialyllactosecontaining gangliosides in the viral membrane and the cellular lectin Siglec-1 as critical determinants for HIV-1 capture and storage by mature DCs and for DC-mediated trans-infection of T cells. In contrast, DC-SIGN, long considered to be the main receptor for DC capture of HIV-1, plays a minor role in mature DC-mediated HIV-1 capture and trans-infection.
Resumo:
Objective: We used demographic and clinical data to design practical classification models for prediction of neurocognitive impairment (NCI) in people with HIV infection. Methods: The study population comprised 331 HIV-infected patients with available demographic, clinical, and neurocognitive data collected using a comprehensive battery of neuropsychological tests. Classification and regression trees (CART) were developed to btain detailed and reliable models to predict NCI. Following a practical clinical approach, NCI was considered the main variable for study outcomes, and analyses were performed separately in treatment-naïve and treatment-experienced patients. Results: The study sample comprised 52 treatment-naïve and 279 experienced patients. In the first group, the variables identified as better predictors of NCI were CD4 cell count and age (correct classification [CC]: 79.6%, 3 final nodes). In treatment-experienced patients, the variables most closely related to NCI were years of education, nadir CD4 cell count, central nervous system penetration-effectiveness score, age, employment status, and confounding comorbidities (CC: 82.1%, 7 final nodes). In patients with an undetectable viral load and no comorbidities, we obtained a fairly accurate model in which the main variables were nadir CD4 cell count, current CD4 cell count, time on current treatment, and past highest viral load (CC: 88%, 6 final nodes). Conclusion: Practical classification models to predict NCI in HIV infection can be obtained using demographic and clinical variables. An approach based on CART analyses may facilitate screening for HIV-associated neurocognitive disorders and complement clinical information about risk and protective factors for NCI in HIV-infected patients.