964 resultados para Uruguay Round (1987-1994)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Satellite-derived remote-sensing reflectance (Rrs) can be used for mapping biogeochemically relevant variables, such as the chlorophyll concentration and the Inherent Optical Properties (IOPs) of the water, at global scale for use in climate-change studies. Prior to generating such products, suitable algorithms have to be selected that are appropriate for the purpose. Algorithm selection needs to account for both qualitative and quantitative requirements. In this paper we develop an objective methodology designed to rank the quantitative performance of a suite of bio-optical models. The objective classification is applied using the NASA bio-Optical Marine Algorithm Dataset (NOMAD). Using in situRrs as input to the models, the performance of eleven semi-analytical models, as well as five empirical chlorophyll algorithms and an empirical diffuse attenuation coefficient algorithm, is ranked for spectrally-resolved IOPs, chlorophyll concentration and the diffuse attenuation coefficient at 489 nm. The sensitivity of the objective classification and the uncertainty in the ranking are tested using a Monte-Carlo approach (bootstrapping). Results indicate that the performance of the semi-analytical models varies depending on the product and wavelength of interest. For chlorophyll retrieval, empirical algorithms perform better than semi-analytical models, in general. The performance of these empirical models reflects either their immunity to scale errors or instrument noise in Rrs data, or simply that the data used for model parameterisation were not independent of NOMAD. Nonetheless, uncertainty in the classification suggests that the performance of some semi-analytical algorithms at retrieving chlorophyll is comparable with the empirical algorithms. For phytoplankton absorption at 443 nm, some semi-analytical models also perform with similar accuracy to an empirical model. We discuss the potential biases, limitations and uncertainty in the approach, as well as additional qualitative considerations for algorithm selection for climate-change studies. Our classification has the potential to be routinely implemented, such that the performance of emerging algorithms can be compared with existing algorithms as they become available. In the long-term, such an approach will further aid algorithm development for ocean-colour studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The botanic origin and the protein content of 15 honeys from small bee farms exploitations of Galicia, for family consume, were studied; the aim is to check if the protein wealth and the pollen wealth are dependent parameters. Seven honeys resulted to be Rhamnus frangula unifloral (pollen patterns with low diversity), two Castanea sativa Miller unifloral, other one heather unifloral, and five was multifloral honeys of various pollen patterns (four Castanea predominant and one Rhamnus frangula predominant). Their pollen wealth was low; eight honeys classified in the Maurizio Class I, 3 in Class II, 2 in Class III, and one in Maurizio Class IV. There has been a wide variability in its protein content (0.09- 4.83 mg prot./g honey). The relative amount of pollen from different taxa has a direct or inverse proportionality to wealth protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a couple of sheets of Umbelliferae that are preserved in the RCAXII herbaria. One of them, Selinum carvifolia, where collected in the Gredos Mountains by Miguel Barnades Mainader and was identified by his son Miguel Barnades Clarís. The other, Tragium flabellifolium, was collected in Mieres (Asturias) by Esteban de Prado and identified by Mariano La Gasca.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of in situ measurements is essential in the validation and evaluation of the algorithms that provide coastal water quality data products from ocean colour satellite remote sensing. Over the past decade, various types of ocean colour algorithms have been developed to deal with the optical complexity of coastal waters. Yet there is a lack of a comprehensive intercomparison due to the availability of quality checked in situ databases. The CoastColour Round Robin (CCRR) project, funded by the European Space Agency (ESA), was designed to bring together three reference data sets using these to test algorithms and to assess their accuracy for retrieving water quality parameters. This paper provides a detailed description of these reference data sets, which include the Medium Resolution Imaging Spectrometer (MERIS) level 2 match-ups, in situ reflectance measurements, and synthetic data generated by a radiative transfer model (HydroLight). These data sets, representing mainly coastal waters, are available from doi:10.1594/PANGAEA.841950. The data sets mainly consist of 6484 marine reflectance (either multispectral or hyperspectral) associated with various geometrical (sensor viewing and solar angles) and sky conditions and water constituents: total suspended matter (TSM) and chlorophyll a (CHL) concentrations, and the absorption of coloured dissolved organic matter (CDOM). Inherent optical properties are also provided in the simulated data sets (5000 simulations) and from 3054 match-up locations. The distributions of reflectance at selected MERIS bands and band ratios, CHL and TSM as a function of reflectance, from the three data sets are compared. Match-up and in situ sites where deviations occur are identified. The distributions of the three reflectance data sets are also compared to the simulated and in situ reflectances used previously by the International Ocean Colour Coordinating Group (IOCCG, 2006) for algorithm testing, showing a clear extension of the CCRR data which covers more turbid waters.