982 resultados para UV-Vis absorbance
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
These films were obtained by dip coating. Parameters like dislocation velocity; number of deposits, suspension concentration, and number of deposits followed or not by heat treatment between each deposit and calcination temperature were evaluated for establishing the best homogeneity. The obtained films were characterized in terms of their morphology, optical quality and photoluminescence by scanning electron microscopy (SEM), UV-vis absorption spectrophotometry and luminescence spectroscopy, respectively. The morphologic and luminescent characteristics showed dip coating as good laboratory technique for development of thin films for optical applications.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The surface pressure-molecular area (pi-A) isotherms for Langmuir monolayers of four perylenetetracarboxylic (PTCD) derivatives, measured with varying subphase temperatures and compression speeds, are reported. The behavior of these PTCD derivatives at the water-air interface is modeled using the rigid docking method. This approach is the first attempt to model the molecular orientation of PTCD on the water surface to be compared with experimental Langmuir isotherms. Through this methodology, it would be possible to anticipate aggregation and determine if favorable spatial orientations of perylenes are generated on the water surface. The pi-A isotherm experiments show that these molecules can support high surface pressures, indicating strong packing on the water surface and that the isotherms are compression speed independent but temperature dependent. The molecular orientation and stacking was further examined in Langmuir-Blodgett (LB) monolayers deposited onto glass and glass coated with Ag island films using UV-visible absorption and surface-enhanced fluorescence (SEF) measurements.
Resumo:
Polyaniline (PAni) thin films were deposited onto BK7 glass substrates using the in situ deposition technique. The control of the time and the aniline concentration in the PAni polymerization reaction on the film deposition allowed us to prepare films with different thickness, down to similar to 25 nm. The film growth process was monitored by measuring the UV-vis spectra and the AFM height profiles of the film surface. The curves of adsorption kinetics were analyzed with the Avrami's model, yielding an exponent it n = 3, thus indicating nucleation of spheroids at the initial stages of polymerization that grow through a diffusion process. AFM images of the surface height profiles corroborate this hypothesis, with spheroids growing with no preferred orientation during the in situ deposition. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Electroactive films of iron tetrasulfonated phthalocyanine (FeTsPc) were assembled via the electrostatic layer-by-layer technique (LBL), in which FeTsPc layers were alternated with the polycationic poly(allylamine hydrochloride) (PAN). The multilayer formation was monitored via UV-Vis spectroscopy by measuring the increase in the Q Band of FeTsPc at 676 nm. Film thickness was estimated by profilometry as ca. 10 Angstrom per bilayer. Fourier transform infrared and UV-Vis absorption spectroscopy suggested specific interactions between FeTsPc and PAR Cyclic voltammograms showed reproducible pairs of oxidation-reduction peaks at 0.92 mV and 0.70 mV, respectively, for a 50-bilayer PAH/FeTsPc film at 50 mV/s (vs Ag/AgNO3).
Photo luminescence: A probe for short, medium and long-range self-organization order in ZrTiO4 oxide
Resumo:
Photoluminescent disordered ZrTiO4 powders were obtained by the polymeric precursor soft-chemical method. This oxide system (ordered and disordered) was characterized by photoluminescence, Raman spectroscopy, X-ray diffraction, differential scanning calorimetry and UV vis absorption experiments. The UV absorption tail formation in the disordered oxides was related to the diminution of optical band gap. In the disordered phase, this oxide displayed broad band photoluminescence caused by change in coordination number of titanium and zirconium with oxygen atoms. The gap decreased from 3.09 eV in crystalline oxide to 2.16 eV in disordered oxide. The crystalline oxide presented an orthorhombic alpha-PbO2-type structure in which Zr4+ and Ti4+ were randomly distributed in octahedral coordination polyhedra with oxygen atoms. The amorphous-crystalline transition occurred at almost 700 degrees C, at which point the photoluminescence vanished. The Raman peak at close to 80-200 cm(-1) indicated the presence of locally ordered Ti-O-n and Zr-O-n polyhedra in disordered photoluminescent oxides. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In this work we present results of X-ray diffraction using powder method, on natural alexandrite samples from Minas Gerais State (Brazil), as a function of a sequence of annealing. From these measurements we determine lattice parameters before (a = 9.405 Angstrom, b = 5.471 Angstrom, c = 4.409 Angstrom) and after annealing, and its structure is confirmed as orthorhombic. Measurements done after an annealing of 15 minutes at 700 degreesC and for 5 hours at 1000 degreesC indicate the migration of atoms present in the sample through different phases, which were also identified by Microprobe Analysis (WDS). However we have verified that such migration does not modify the structure. X-ray diffraction measurements have been carried out in conjunction with optical absorption in the UV-Vis as a function of annealing. (C) 2002 International Centre for Diffraction Data.