902 resultados para UV degradation
Resumo:
The ripening processes of 24 apple cultivars were examined in the United Kingdom National Fruit Collection in 2010. Basically the starch content, and additionally ground colour, water-soluble solids content and flesh firmness were studied during ripening. The degradation of the starch content was evaluated using a 0–10 scale. A starch degradation value of 50% was taken to be the optimum harvest date, with harvest beginning at a value of 40% and finishing at 60%. Depending on the cultivar, this represented a harvest window of 9 to 21 days. Later ripening cultivars matured more slowly, leading to a longer harvesting period, with the exception of cv. Feuillemorte. Pronounced differences were observed among the cultivars on the basis of the starch degradation pattern, allowing them to be divided into four groups. Separate charts were elaborated for each group that are recommended for use in practice.
Resumo:
The synthesis and fluorescence behavior of a series of bis(trisilylalkyl)anthracene molecules is described. The photodegradation of these molecules under UV light has been monitored and compared to a commercially available fluorescent optical brightener. There is a relationship between the structure and the rate of photo decay. The materials with more bulky substituents exhibit the greater stability towards UV. For bis(triphenylsilyl)anthracene the photostability appears to be comparable with a commercially available optical brightener, but the molecule may be susceptible to thermal decay.
Resumo:
In der biologischen Massenspektrometrie (MS) werden überwiegend zwei Ionisationstechniken für die Analyse von grçßeren Biomolekfürlen wie Polypeptiden eingesetzt. Dies sind die Nano-Elektrospray-Ionisation[1,2] (nanoESI) und die matrixunterstfürtzte Laserdesorption/-ionisation[3, 4] (MALDI). Beide Techniken werden als „sanft“ bezeichnet, weil sie die Desorption und Ionisation von intakten Analytmolekfürlen und damit ihre erfolgreiche massenspektrometrische Analyse erlauben. Einer der wichtigsten Unterschiede zwischen diesen beiden Ionisationstechniken liegt in ihrer F�higkeit, mehrfach geladene Ionen zu erzeugen. MALDI erzeugt typischerweise einfach geladene Peptidionen, w�hrend nano- ESI leicht mehrfach geladene Ionen produziert, sogar für Peptide mit einer Masse von weniger als 1000 Da. Die Erzeugung von hoch geladenen Ionen ist wünschenswert, da dies die Verwendung von Massenanalysatoren wie Ionenfallen (inkl. Orbitraps) und Hybrid-Quadrupolinstrumenten ermçglicht, die typischerweise nur einen begrenzten m/z- Bereich (<2000–4000) bieten. Hohe Ladungszust�nde ermçglichen auch die Aufnahme von informativeren Fragmentionenspektren, wenn Methoden wie die kollisionsinduzierte Dissoziation (CID), die Elektroneneinfang-Dissoziation (ECD) und die Elektronentransfer-Dissoziation (ETD) in Kombination mit der Tandem-MS (MS/MS) verwendet werden.
Resumo:
A surface- and vertical subsurface-flow-constructed wetland were designed to study the response of chlorophyll and antioxidant enzymes to elevated UV radiation in three types of wetland plants (Canna indica, Phragmites austrail, and Typha augustifolia). Results showed that (1) chlorophyll content of C. indica, P. austrail, and T. augustifolia in the constructed wetland was significantly lower where UV radiation was increased by 10 and 20 % above ambient solar level than in treatment with ambient solar UV radiation (p < 0.05). (2) The malondialdehyde (MDA) content, guaiacol peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) activities of wetland plants increased with elevated UV radiation intensity. (3) The increased rate of MDA, SOD, POD, and CAT activities of C. indica, P. australis, and T. angustifolia by elevated UV radiation of 10 % was higher in vertical subsurface-flow-constructed wetland than in surface-flow-constructed wetland. The sensitivity of MDA, SOD, POD, and CAT activities of C. indica, P. austrail, and T. augustifolia to the elevated UV radiation was lower in surface-flow-constructed wetland than in the vertical subsurface-flow-constructed wetland, which was related to a reduction in UV radiation intensity through the dissolved organic carbon and suspended matter in the water. C. indica had the highest SOD and POD activities, which implied it is more sensitive to enhanced UV radiation. Therefore, different wetland plants had different antioxidant enzymes by elevated UV radiation, which were more sensitive in vertical subsurface-flow-constructed wetland than in surface-flow-constructed wetland.
Resumo:
The enzymatic cleavage of a peptide amphiphile (PA) is investigated. The self-assembly of the cleaved products is distinct from that of the PA substrate. The PA C16-KKFFVLK is cleaved by α-chymotrypsin at two sites leading to products C16-KKF with FVLK and C16-KKFF with VLK. The PA C16-KKFFVLK forms nanotubes and helical ribbons at room temperature. Both PAs C16-KKF and C16-KKFF corresponding to cleavage products instead self-assemble into 5-6 nm diameter spherical micelles, while peptides FVLK and VLK do not adopt well-defined aggregate structures. The secondary structures of the PAs and peptides are examined by FTIR and circular dichroism spectroscopy and X-ray diffraction. Only C16-KKFFVLK shows substantial β-sheet secondary structure, consistent with its self-assembly into extended aggregates, based on PA layers containing hydrogen-bonded peptide headgroups. This PA also exhibits a thermoreversible transition to twisted tapes on heating.
Resumo:
Objectives A pharmacy Central Intravenous Additives Service (CIVAS) provides ready to use injectable medicines. However, manipulation of a licensed injectable medicine may significantly alter the stability of drug(s) in the final product. The aim of this study was to develop a stability indicating assay for CIVAS produced dobutamine 500 mg in 50 ml dextrose 1% (w/v) prefilled syringes, and to allocate a suitable shelf life. Methods A stability indicating high performance liquid chromatography (HPLC) assay was established for dobutamine. The stability of dobutamine prefilled syringes was evaluated under storage conditions of 4°C (protected from light), room temperature (protected from light), room temperature (exposed to light) and 40°C (protected from light) at various time points (up to 42 days). Results An HPLC method employing a Hypersil column, mobile phase (pH=4.0) consisting of 82:12:6 (v/v/v) 0.05 M KH2PO4:acetonitrile:methanol plus 0.3% (v/v) triethylamine with UV detection at λ=280 nm was specific for dobutamine. Under different storage conditions only samples stored at 40°C showed greater than 5% degradation (5.08%) at 42 days and had the shortest T95% based on this criterion (44.6 days compared with 111.4 days for 4°C). Exposure to light also reduced dobutamine stability. Discolouration on storage was the limiting factor in shelf life allocation, even when dobutamine remained within 5% of the initial concentration. Conclusions A stability indicating HPLC assay for dobutamine was developed. The shelf life recommended for the CIVAS product was 42 days at 4°C and 35 days at room temperature when protected from light.
Resumo:
We have studied the degradation of sebaceous fingerprints on brass surfaces using silver electroless deposition (SED) as a visualization technique. We have stored fingerprints on brass squares either (i) in a locked dark cupboard or (ii) in glass-filtered natural daylight for periods of 3 h, 24 h, 1 week, 3 weeks, and 6 weeks. We find that fingerprints on brass surfaces degrade much more rapidly when kept in the light than they do under dark conditions with a much higher proportion of high-quality prints found after 3 or 6 weeks of aging when stored in the dark. This process is more marked than for similar fingerprints on black PVC surfaces. Identifiable prints can be achieved on brass surfaces using both SED and cyanoacrylate fuming (CFM). SED is quick and straightforward to perform. CFM is more time-consuming but is versatile and can be applied to a wider range of metal surfaces than SED, for example brass surfaces which have been coated by a lacquer.
Resumo:
Rhizoremediation is a bioremediation technique whereby enhanced microbial degradation of organic contaminants occurs within the plant root zone (rhizosphere). It is considered an effective and affordable ‘green technology’ for remediating soils contaminated with petroleum hydrocarbons (PHCs). This paper critically reviews the potential role of root exuded compounds in rhizoremediation, with emphasis on commonly exuded low molecular weight aliphatic organic acid anions (carboxylates). The extent to which remediation is achieved shows wide disparity among plant species. Therefore, plant selection is crucial for the advancement and widespread adoption of this technology. Root exudation is speculated to be one of the predominant factors leading to microbial changes in the rhizosphere and thus the potential driver behind enhanced petroleum biodegradation. Carboxylates can form a significant component of the root exudate mixture and are hypothesised to enhance petroleum biodegradation by: i) providing an easily degradable energy source; ii) increasing phosphorus supply; and/or iii) enhancing the contaminant bioavailability. These differing hypotheses, which are not mutually exclusive, require further investigation to progress our understanding of plant–microbe interactions with the aim to improve plant species selection and the efficacy of rhizoremediation.
Resumo:
A controlled laboratory experiment is described, in principle and practice, which can be used for the of determination the rate of tissue decomposition in soil. By way of example, an experiment was conducted to determine the effect of temperature (12°C, 22°C) on the aerobic decomposition of skeletal muscle tissue (Organic Texel × Suffolk lamb (Ovis aries)) in a sandy loam soil. Measurements of decomposition processes included muscle tissue mass loss, microbial CO2 respiration, and muscle tissue carbon (C) and nitrogen (N). Muscle tissue mass loss at 22°C always was greater than at 12°C (p < 0.001). Microbial respiration was greater in samples incubated at 22°C for the initial 21 days of burial (p < 0.01). All buried muscle tissue samples demonstrated changes in C and N content at the end of the experiment. A significant correlation (p < 0.001) was demonstrated between the loss of muscle tissue-derived C (C1) and microbially-respired C (Cm) demonstrating CO2 respiration may be used to predict mass loss and hence biodegradation. In this experiment Q10 (12°C - 22°C) = 2.0. This method is recommended as a useful tool in determining the effect of environmental variables on the rate of decomposition of various tissues and associated materials.
Resumo:
The relationships between the four radiant fluxes are analyzed based on a 4 year data archive of hourly and daily global ultraviolet (I(UV)), photosynthetically active-PAR (I(PAR)), near infrared (I(NIR)) and broadband global solar radiation (I(G)) collected at Botucatu, Brazil. These data are used to establish both the fractions of spectral components to global solar radiation and the proposed linear regression models. Verification results indicated that the proposed regression models predict accurately the spectral radiant fluxes at least for the Brazilian environment. Finally, results obtained in this analysis agreed well with most published results in the literature. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this analysis, using available hourly and daily radiometric data performed at Botucatu, Brazil, several empirical models relating ultraviolet (UV), photosynthetically active (PAR) and near infrared (NIR) solar global components with solar global radiation (G) are established. These models are developed and discussed through clearness index K(T) (ratio of the global-to-extraterrestrial solar radiation). Results obtained reveal that the proposed empirical models predict hourly and daily values accurately. Finally. the overall analysis carried Out demonstrates that the sky conditions are more important in developing correlation models between the UV component and the global solar radiation. The linear regression models derived to estimate PAR and NIR components may be obtained without sky condition considerations within a maximum variation of 8%. In the case of UV, not taking into consideration the sky condition may cause a discrepancy of up to 18% for hourly values and 15% for daily values. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The abundance of heavy r-elements may provide a better understanding of the r-process, and the determination of several reference r-elements should allow a better determination of a star`s age. The space UV region (lambda < 3000 angstrom) presents a large number of lines of the heavy elements, and in the case of some elements, such as Bi, Pt, Au, detectable lines are not available elsewhere. The extreme ""r-process star"" CS 31082-001 ([Fe/H] = -2.9) was observed in the space UV to determine abundances of the heaviest stable elements, using STIS on board Hubble Space Telescope.
Resumo:
We have studied the effects of nitrate supply under photosynthetic active radiation (PAR) plus ultraviolet radiation (UVR) exposure on photosynthetic pigments (chlorophyll a and carotenoids), photoprotective UV screen mycosporine-like amino acids (MAAs), and photosynthetic parameters, including the maximum quantum yield (F(v)/F(m)) and electron transport rate (ETR) on the red agarophyte Gracilaria tenuistipitata. Apical tips of G. tenuistipitata were cultivated under ten different concentrations of NO(3)(-) for 7 days. It has been shown that G. tenuistipitata cultured under laboratory conditions has the ability to accumulate high amounts of MAAs following a nitrate concentration-dependent manner under PAR+UVR. Two MAAs were identified, shinorine and porphyra-334. The relative concentration of the first increased under high concentrations of nitrate, while the second one decreased. The presence of antheraxanthin is reported for the first time in this macro-algae, which also contains zeaxanthin, lutein, and beta-carotene. The accumulation of pigments, photoprotective compounds, and photosynthetic parameters of G. tenuistipitata is directly related to N availability. All variables decreased under low N supplies and reached constant maximum values with supplements higher than 0.5 mM NO(3)(-). Our results suggest a high potential to acclimation and photoprotection against stress factors (including high PAR and UVR) directly related to N availability for G. tenuistipitata.
Resumo:
Cell wall storage polysaccharides (CWSPs) are found as the principal storage compounds in seeds of many taxonomically important groups of plants. These groups developed extremely efficient biochemical mechanisms to disassemble cell walls and use the products of hydrolysis for growth. To accumulate these storage polymers, developing seeds also contain relatively high activities of noncellulosic polysaccharide synthases and thus are interesting models to seek the discovery of genes and enzymes related to polysaccharide biosynthesis. CWSP systems offer opportunities to understand phenomena ranging from polysaccharide deposition during seed maturation to the control of source-sink relationship in developing seedlings. By studying polysaccharide biosynthesis and degradation and the consequences for cell and physiological behavior, we can use these models to develop future biotechnological applications.