980 resultados para UPPER-LEVEL FRONTOGENESIS
Resumo:
Crashes at level crossings are a major issue worldwide. In Australia, as well as in other countries, the number of crashes with vehicles has declined in the past years, while the number of crashes involving pedestrians seems to have remained unchanged. A systematic review of research related to pedestrian behaviour highlighted a number of important scientific gaps in current knowledge. The complexity of such intersections imposes particular constraints to the understanding of pedestrians’ crossing behaviour. A new systems-based framework, called Pedestrian Unsafe Level Crossing framework (PULC) was developed. The PULC organises contributing factors to crossing behaviour on different system levels as per the hierarchical classification of Jens Rasmussen’s Framework for Risk Management. In addition, the framework adapts James Reason’s classification to distinguish between different types of unsafe behaviour. The framework was developed as a tool for collection of generalizable data that could be used to predict current or future system failures or to identify aspects of the system that require further safety improvement. To give it an initial support, the PULC was applied to the analysis of qualitative data from focus groups discussions. A total number of 12 pedestrians who regularly crossed the same level crossing were asked about their daily experience and their observations of others’ behaviour which allowed the extraction and classification of factors associated with errors and violations. Two case studies using Rasmussen’s AcciMap technique are presented as an example of potential application of the framework. A discussion on the identified multiple risk contributing factors and their interactions is provided, in light of the benefits of applying a systems approach to the understanding of the origins of individual’s behaviour. Potential actions towards safety improvement are discussed.
Resumo:
Intelligent Transport Systems (ITS) have the potential to substantially reduce the number of crashes caused by human errors at railway levels crossings. However, such systems could overwhelm drivers, generate different types of driver errors and have negative effects on safety at level crossing. The literature shows an increasing interest for new ITS for increasing driver situational awareness at level crossings, as well as evaluations of such new systems on compliance. To our knowledge, the potential negative effects of such technologies have not been comprehensively evaluated yet. This study aimed at assessing the effect of different ITS interventions, designed to enhance driver behaviour at railway crossings, on driver’s cognitive loads. Fifty eight participants took part in a driving simulator study in which three ITS devices were tested: an in-vehicle visual ITS, an in-vehicle audio ITS, and an on-road valet system. Driver cognitive load was objectively and subjectively assessed for each ITS intervention. Objective data were collected from a heart rate monitor and an eye tracker, while subjective data was collected with the NASA-TLX questionnaire. Overall, results indicated that the three trialled technologies did not result in significant changes in cognitive load while approaching crossings.
Resumo:
In an estuary, mixing and dispersion result from a combination of large-scale advection and smallscale turbulence, which are complex to estimate. The predictions of scalar transport and mixing are often inferred and rarely accurate, due to inadequate understanding of the contributions of these difference scales to estuarine recirculation. A multi-device field study was conducted in a small sub-tropical estuary under neap tide conditions with near-zero fresh water discharge for about 48 hours. During the study, acoustic Doppler velocimeters (ADV) were sampled at high frequency (50 Hz), while an acoustic Doppler current profiler (ADCP) and global positioning system (GPS) tracked drifters were used to obtain some lower frequency spatial distribution of the flow parameters within the estuary. The velocity measurements were complemented with some continuous measurement of water depth, conductivity, temperature and some other physiochemical parameters. Thorough quality control was carried out by implementation of relevant error removal filters on the individual data set to intercept spurious data. A triple decomposition (TD) technique was introduced to access the contributions of tides, resonance and ‘true’ turbulence in the flow field. The time series of mean flow measurements for both the ADCP and drifter were consistent with those of the mean ADV data when sampled within a similar spatial domain. The tidal scale fluctuation of velocity and water level were used to examine the response of the estuary to tidal inertial current. The channel exhibited a mixed type wave with a typical phase-lag between 0.035π– 0.116π. A striking feature of the ADV velocity data was the slow fluctuations, which exhibited large amplitudes of up to 50% of the tidal amplitude, particularly in slack waters. Such slow fluctuations were simultaneously observed in a number of physiochemical properties of the channel. The ensuing turbulence field showed some degree of anisotropy. For all ADV units, the horizontal turbulence ratio ranged between 0.4 and 0.9, and decreased towards the bed, while the vertical turbulence ratio was on average unity at z = 0.32 m and approximately 0.5 for the upper ADV (z = 0.55 m). The result of the statistical analysis suggested that the ebb phase turbulence field was dominated by eddies that evolved from ejection type process, while that of the flood phase contained mixed eddies with significant amount related to sweep type process. Over 65% of the skewness values fell within the range expected of a finite Gaussian distribution and the bulk of the excess kurtosis values (over 70%) fell within the range of -0.5 and +2. The TD technique described herein allowed the characterisation of a broader temporal scale of fluctuations of the high frequency data sampled within the durations of a few tidal cycles. The study provides characterisation of the ranges of fluctuation required for an accurate modelling of shallow water dispersion and mixing in a sub-tropical estuary.
Resumo:
Five significant problems hinder advances in understanding of the volcanology of kimberlites: (1) kimberlite geology is very model driven; (2) a highly genetic terminology drives deposit or facies interpretation; (3) the effects of alteration on preserved depositional textures have been grossly underestimated; (4) the level of understanding of the physical process significance of preserved textures is limited; and, (5) some inferred processes and deposits are not based on actual, modern volcanological processes. These issues need to be addressed in order to advance understanding of kimberlite volcanological pipe forming processes and deposits. The traditional, steep-sided southern African pipe model (Class I) consists of a steep tapering pipe with a deep root zone, a middle diatreme zone and an upper crater zone (if preserved). Each zone is thought to be dominated by distinctive facies, respectively: hypabyssal kimberlite (HK, descriptively called here massive coherent porphyritic kimberlite), tuffisitic kimberlite breccia (TKB, descriptively here called massive, poorly sorted lapilli tuff) and crater zone facies, which include variably bedded pyroclastic kimberlite and resedimented and reworked volcaniclastic kimberlite (RVK). Porphyritic coherent kimberlite may, however, also be emplaced at different levels in the pipe, as later stage intrusions, as well as dykes in the surrounding country rock. The relationship between HK and TKB is not always clear. Sub-terranean fluidisation as an emplacement process is a largely unsubstantiated hypothesis; modern in-vent volcanological processes should initially be considered to explain observed deposits. Crater zone volcaniclastic deposits can occur within the diatreme zone of some pipes, indicating that the pipe was largely empty at the end of the eruption, and subsequently began to fill-in largely through resedimentation and sourcing of pyroclastic deposits from nearby vents. Classes II and III Canadian kimberlite models have a more factual, descriptive basis, but are still inadequately documented given the recency of their discovery. The diversity amongst kimberlite bodies suggests that a three-model classification is an over-simplification. Every kimberlite is altered to varying degrees, which is an intrinsic consequence of the ultrabasic composition of kimberlite and the in-vent context; few preserve original textures. The effects of syn- to post-emplacement alteration on original textures have not been adequately considered to date, and should be back-stripped to identify original textural elements and configurations. Applying sedimentological textural configurations as a guide to emplacement processes would be useful. The traditional terminology has many connotations about spatial position in pipe and of process. Perhaps the traditional terminology can be retained in the industrial situation as a general lithofacies-mining terminological scheme because it is so entrenched. However, for research purposes a more descriptive lithofacies terminology should be adopted to facilitate detailed understanding of deposit characteristics, important variations in these, and the process origins. For example every deposit of TKB is different in componentry, texture, or depositional structure. However, because so many deposits in many different pipes are called TKB, there is an implication that they are all similar and that similar processes were involved, which is far from clear.
Resumo:
The purpose of this study is to examine the current level of stakeholder involvement during the project's planning process. Stakeholders often provide the needed resources and have the ability to control the interaction and resource flows in the network. They also ultimately have strong impact on an organisation's survival, and therefore appropriate management and involvement of key stakeholders should be an important part of any project management plan. A series of literature reviews was conducted to identify and categorise significant phases involved in the planning. For data collection, a questionnaire survey was designed and distributed amongst nearly 200 companies who were involved in the residential building sector in Australia. Results of the analysis demonstrate the engagement levels of the four stakeholder groups involved in the planning process and establish a basis for further stakeholder involvement improvement.
Resumo:
The number of pedestrian victims at Australian and foreign level crossings has remained stable over the past decade and it continues to be a significant problem. To examine the factors contributing to pedestrians’ unsafe crossing behaviours, direct observations were conducted at three black spot urban level crossings in Brisbane for a total of 45 h during morning and afternoon peak. In total, 129 pedestrians transgressed the active controls. More transgressions were observed at the crossings located in more populated suburbs in close proximity to large shopping centres and school zones, whereas the smallest number of transgressions were observed at the least populated locations. In addition to characteristics associated with the larger socio-economic area, the patterns of transgression could be associated with the properties of the existing safety equipment and the design of each level crossing (i.e. location of the platforms, number of rail tracks). Indeed, the largest number of crossed unoccupied but “at risk” rail tracks (where a train could have passed), was observed at the crossing with the least transgressions. Contrary to previous findings, younger adults were the most frequent transgressors. School children and elderly were most likely to transgress in groups. Potential directions for future research and more effective measures are discussed.
Resumo:
Obstructive sleep apnoea (OSA) is a chronic condition in which the upper airways collapse repeatedly during sleep, completely or partially obstructing breathing. This obstruction leads to chronic intermittent hypoxia and severe sleep fragmentation, disrupting the restorative functions of sleep. Beebe and Gozal (2002)a developed a theory which hypothesises that disruption of the restorative functions of sleep lead to a chronic low level brain damage most evident in executive functions (EF). Neuropsychological testing of EF, volumetric MRI, magnetic resonance spectroscopy, event related potentials and CSF biomarkers all provide support for this theory. Little research has been done to explore the nature of the subjective complaint and it’s impact on the activities of daily living.
Resumo:
Moreton Island and several other large siliceous sand dune islands and mainland barrier deposits in SE Queensland represent the distal, onshore component of an extensive Quaternary continental shelf sediment system. This sediment has been transported up to 1000 km along the coast and shelf of SE Australia over multiple glacioeustatic sea-level cycles. Stratigraphic relationships and a preliminary Optically Stimulated Luminance (OSL) chronology for Moreton Island indicate a middle Pleistocene age for the large majority of the deposit. Dune units exposed in the centre of the island and on the east coast have OSL ages that indicate deposition occurred between approximately 540 ka and 350 ka BP, and at around 96±10 ka BP. Much of the southern half of the island has a veneer of much younger sediment, with OSL ages of 0.90±0.11 ka, 1.28±0.16 ka, 5.75±0.53 ka and <0.45 ka BP. The younger deposits were partially derived from the reworking of the upper leached zone of the much older dunes. A large parabolic dune at the northern end of the island, OSL age of 9.90±1.0 ka BP, and palaeosol exposures that extend below present sea level suggest the Pleistocene dunes were sourced from shorelines positioned several to tens of metres lower than, and up to few kilometres seaward of the present shoreline. Given the lower gradient of the inner shelf a few km seaward of the island, it seems likely that periods of intermediate sea level (e.g. ~20 m below present) produced strongly positive onshore sediment budgets and the mobilisation of dunes inland to form much of what now comprises Moreton Island. The new OSL ages and comprehensive OSL chronology for the Cooloola deposit, 100 km north of Moreton Island, indicate that the bulk of the coastal dune deposits in SE Queensland were emplaced between approximately 540 ka BP and prior to the Last Interglacial. This chronostratigraphic information improves our fundamental understanding of long-term sediment transport and accumulation on large-scale continental shelf sediment systems.
Resumo:
There are currently 23,500 level crossings in Australia, broadly divided active level crossings with flashing lights; and passive level crossings controlled by stop and give way signs. The current strategy is to annually upgrade passive level crossings with active controls within a given budget, but the 5,900 public passive crossings are too numerous to be upgraded all. The rail industry is considering alternative options to treat more crossings. One of them is to use lower cost equipment with reduced safety integrity level, but with a design that would fail to a safe state: in case of the impossibility for the system to know whether a train is approaching, the crossing changes to a passive crossing. This is implemented by having a STOP sign coming in front of the flashing lights. While such design is considered safe in terms of engineering design, questions remain on human factors. In order to evaluate whether such approach is safe, we conducted a driving simulator study where participants were familiarized with the new active crossing, before changing the signage to a passive crossing. Our results show that drivers treated the new crossing as an active crossing after the novelty effect had passed. While most participants did not experience difficulties with the crossing being turned back to a passive crossing, a number of participants experienced difficulties stopping in time at the first encounter of such passive crossing. Worse, a number of drivers never realized the signage had changed, highlighting the link between the decision to brake and stop at an active crossing to the lights flashing. Such results show the potential human factor issues of changing an active crossing to a passive crossing in case of failure of the detection of the train.
Resumo:
Background: Younger and older pedestrians are both overrepresented in train-pedestrian injury and fatality collision databases. However, scant research has attempted to determine the factors that influence level crossing behaviours for these high risk groups. Method: Five focus groups were undertaken with a total of 27 younger and 17 older pedestrian level crossing users (N = 44). Due to the lack of research in the area, a focus group methodology was implemented to gain a deeper exploratory understanding into the sample’s decision making processes through a pilot study. The three main areas of enquiry were identifying the: (a) primary reasons for unsafe behaviour; (b) factors that deter this behaviour and (c) proposed interventions to improve pedestrian safety at level crossings in the future. Results: Common themes to emerge from both groups regarding the origins of unsafe behaviours were: running late and a fatalistic perspective that some accidents are inevitable. However, younger pedestrians were more likely to report motivators to be: (a) non-perception of danger; (b) impulsive risk taking; and (c) inattention. In contrast, older pedestrians reported their decisions to cross are influenced by mobility issues and sensory salience. Conclusion: The findings indicate that a range of factors influence pedestrian crossing behaviours. This paper will further outline the major findings of the research in regards to intervention development and future research direction.
Resumo:
There are currently 23,500 level crossings in Australia, broadly divided into one of two categories: active level crossings which are fully automatic and have boom barriers, alarm bells, flashing lights, and pedestrian gates; and passive level crossings, which are not automatic and aim to control road and pedestrianised walkways solely with stop and give way signs. Active level crossings are considered to be the gold standard for transport ergonomics when grade separation (i.e. constructing an over- or underpass) is not viable. In Australia, the current strategy is to annually upgrade passive level crossings with active controls but active crossings are also associated with traffic congestion, largely as a result of extended closure times. The percentage of time level crossings are closed to road vehicles during peak periods increases with the rise in the frequency of train services. The popular perception appears to be that once a level crossing is upgraded, one is free to wipe their hands and consider the job done. However, there may also be environments where active protection is not enough, but where the setting may not justify the capital costs of grade separation. Indeed, the associated congestion and traffic delay could compromise safety by contributing to the risk taking behaviour by motorists and pedestrians. In these environments it is important to understand what human factor issues are present and ask the question of whether a one size fits all solution is indeed the most ergonomically sound solution for today’s transport needs.
Resumo:
Even though crashes between trains and road users are rare events at railway level crossings, they are one of the major safety concerns for the Australian railway industry. Nearmiss events at level crossings occur more frequently, and can provide more information about factors leading to level crossing incidents. In this paper we introduce a video analytic approach for automatically detecting and localizing vehicles from cameras mounted on trains for detecting near-miss events. To detect and localize vehicles at level crossings we extract patches from an image and classify each patch for detecting vehicles. We developed a region proposals algorithm for generating patches, and we use a Convolutional Neural Network (CNN) for classifying each patch. To localize vehicles in images we combine the patches that are classified as vehicles according to their CNN scores and positions. We compared our system with the Deformable Part Models (DPM) and Regions with CNN features (R-CNN) object detectors. Experimental results on a railway dataset show that the recall rate of our proposed system is 29% higher than what can be achieved with DPM or R-CNN detectors.
Resumo:
A teaching laboratory experiment is described that uses Archimedes’ principle to precisely investigate the effect of global warming on the oceans. A large component of sea level rise is due to the increase in the volume of water due to the decrease in water density with increasing temperature. Water close to 0 °C is placed in a beaker and a glass marble hung from an electronic balance immersed in the water. As the water warms, the weight of the marble increases as the water is less buoyant due to the decrease in density. In the experiment performed in this paper a balance with a precision of 0.1 mg was used with a marble 40.0 cm3 and mass of 99.3 g, yielding water density measurements with an average error of -0.008 ± 0.011%.
Resumo:
The current study examined drink driving attitudes among mature-aged women in Sweden and Australia, two countries with a Blood Alcohol Concentration (BAC) limit of 0.02% and 0.05%, respectively. The study aimed to identify attitudes that might influence drink driving tendency among this group of women and further show how these attitudes vary across countries. Using an ethnographic approach, 15 mature-aged women (Sweden: mean age = 52.5years, SD = 4.8; Australia: mean age 52.2 years, SD = 3.4) were interviewed in each country. General patterns and themes from the data were developed using thematic analysis methods. The findings indicate that while women in both countries viewed drink driving negatively, the understanding of what the concept entailed differed between the two samples. The Swedish women appeared to cognitively separate alcohol consumption and driving, and consequently, drink driving was often spoken of as driving after any alcohol consumption. The Australian women’s understanding of drink driving was more closely related to the legal BAC limit. However, for some Australian women, a “Grey Zone” existed, which denoted driving with a BAC of just above the enforceable limit. While illegal, these instances were subjectively seen as similar to driving with a BAC of just under the legal limit and therefore not morally reprehensible. The practice of cognitively separating drinking from driving appeared to have implications for the tendency to drink and drive among the interviewed women. These findings are discussed in relation to current policy and legislation in Australia and the need for further research into mature-aged women’s drink driving is outlined.
Resumo:
Introduction Clinically, the Cobb angle method measures the overall scoliotic curve in the coronal plane but does not measure individual vertebra and disc wedging. The contributions of the vertebrae and discs in the growing scoliotic spine were measured to investigate coronal plane deformity progression with growth. Methods A 0.49mm isotropic 3D MRI technique was developed to investigate the level-by-level changes that occur in the growing spine of a group of Adolescent Idiopathic Scoliosis (AIS) patients, who received two to four sequential scans (spaced 3-12 months apart). The coronal plane wedge angles of each vertebra and disc in the major curve were measured to capture any changes that occurred during their adolescent growth phase. Results Seventeen patients had at least two scans. Mean patient age was 12.9 years (SD 1.5 years). Sixteen were classified as right-sided major thoracic Lenke Type 1 (one left sided). Mean standing Cobb angle at initial presentation was 31° (SD 12°). Six received two scans, nine three scans and two four scans, with 65% showing a Cobb angle progression of 5° or more between scans. Overall, there was no clear pattern of deformity progression of individual vertebrae and discs, nor between patients who progressed and those who didn’t. There were measurable changes in the wedging of the vertebrae and discs in all patients. In sequential scans, change in direction of wedging was also seen. In several patients there was reverse wedging in the discs that counteracted increased wedging of the vertebrae such that no change in overall Cobb angle was seen. Conclusion Sequential MRI data showed complex patterns of deformity progression. Changes to the wedging of individual vertebrae and discs may occur in patients who have no increase in Cobb angle measure; the Cobb method alone may be insufficient to capture the complex mechanisms of deformity progression.