966 resultados para Triple superphosphate


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work is destinated to prove that the castes : workers and queens, in Melipona bees are due to genetic factors and not to differences in food. 2) Material used: Hives of Melipona quadri-fasciata anthidioides (Lep. 1836), M. schenki schenki (Gribodo, 1893), M. fasciata rufiventris (Lep. 1836), M. quadri-fasciata vicina (Lep. 1836), M. marginata marginata (Lep. 1836), Apis mellifera (L. 1758). 3) It should be pointed out that in Melipona bees there are no royal cells for the queens, but all the cells are of the same size independently of being destinated for workers, queens or drones. The numerous queens which are born are killed soon after emerging from their cells. 4) Changes of feeding in quality and in quantity caused no variation of castes. The only variable factor is the size, which becomes bigger when the bee is well nourished. 5) The offsprings of 5 hives were examined : 3 of M. quadri-fasciata anthidioides (n.o 1, n.o 2 and n.o 3), 1 of M. quadri-fasciata vicina (n.o 4) and 1 of M. marginata marginata (n.o 5). Combs of about 40 cells were taken into laboratory and the type of bee registered immediately after emerging. The results of the counts were: BOX COMB WORKER QUEEN PERCENTAGE Σ X2 to 12,5% Nº 1 1th 69 8 10,4% 0, 3139 " 1 2nd 144 18 11,1% 0, 2856 " 2 1th 52 8 13,3% 0, 0384 " 3 1th 45 10 18,2% 1, 6736 " 4 1th 56 4 6,7% 1, 8686 " 4 2nd 29 4 12,1% 0,00432 Σ X2 to 25% " 5 1th 34 14 29,2% 0,44444 "5 2nd 83 27 24,5% 0, 0121 In the 4 first boxes there is a percentage of 11,63% queens and in the last there is a percentage of 25,95%. 6) These percentages are very near two genetical ratios: 12,5% or 7:1, and 25% or 3:1, which correspond to a trifactorial and a bifactorial back-cross. Carrying out a X² test no significant deviations were found ( X² to 12,5% and to 25% and table 1 to 4). 7) We suppose that the formula for the queen in the first case (11,65%) is: AaBbCc. Since the Melipona bees are arrhenotokous hymenopteres, the drones are haploid and may have any one of the following eight formulas, corresponding to the gonic segregation of the queem : ABC, ABc, Abc, Abc, AbC, aBC, aBc, abC, abc. Anyone combination of these males with the queen will give a segregation of 7 workers to 1 queen, since there is always only one triple heterozygote among the eight possible segregates (table 5). 8) In order to explain the second case, it is suffient to assume that in this species there are only two pairs of factors, the queen being the double heterozygote : AaBb, while the drones may have any one of the following constitutions: AB, Ab, aB and ab. Workers are again all diploids which are homozygous for one or both factors, for instance: AABB, AABb, AaBB, aaBb, AAbb, etc. (table 6). 9) It is suggested that the genus Melipona is an intermediary type between the solitary bees, where all females are fertile independently of their feeding, and the genera Apis and Trigona, where without special feeding all females are born sterile, while only specially fed females develop into fertile queens. 10) No speculations are put forward with regards to the evolutionary mechanism which may have been responsible for the development of the genetical determination of castes in Melipona, since it seems advisable point to extend the studies to other insects with complicated caste systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Statistical analyses of an experiment on wheat were carried out with the aid of Mitscherlich's law. The experiment was made in Ponta Grossa, Paraná, by the Ministry of Agriculture of Brasil. Lime, in the form of Ca(OH)2, was applied at the levels of 0, 2, 4, 6 and 8 metric tons per hectare. A 5 x 5 Latin square was used. Lime was applied in 1940 and wheat was cultivated in the same plots for several years. The following fertilizers were annually used for all plots: NaNO3 100 kilograms per hectare, Superphosphate 350 kilograms per hectare, K2S04 80 kilograms per hectare. The statistical analysis of the data collected in 1941, 1942, 1943, 1947 and 1948, carried out in accordance with the methods previously introduced by Pimentel Gomes and Malavolta (1949 a, 1949 b) and Pimentel Gomes (1950), proved: I. That Mitscherlich's law could be correctly applied to the data. II. That there was a statistically significant effect of lime on wheat yield. III. That the optimum amount of lime to be applied to the soil lies between 5 and 15 hundred kilograms of Ca(OH)2 per hectare. IV. That there is a migration of calcium from some plots to others, in such a way that the data obtained in 1947 and 1948 are not representative of the amounts of lime applied in 1940. V. That the analysis of variance can be used, as the Bartlett test shows that the variances at the distinct levele of lime application are not statistically different. It must be noted that, with improved variety and fertilization, the yield was rised to about 2500 kilograms per hectare in 1947, and 1600 in 1948, being only of about 100 kilograms per hectare in 1940.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper it is studied the action of vinasse as compared to mineral fertilizers. Beans, corn, cotton and sesame were cultivated in randomized blocks receiving the following treatments: A = mineral fertilizers (N, P, K); V = vinasse at the rate of 1,000,000 liters per Ha; AV = mineral fertilizers + vinasse; T = control. Statistical analysis of the experiments has consistently revealed the superiority of vinasse either combined or not with the mineral fertilizers over the remaining treatments. There was no significant difference between V and AV which shows the surprizing role of vinasse when applied to light soils such as those employed in the present experiments. By employing 1,000,000 liters of vinasse to the hectare the following amounts of nutrientes were applied to the crops in this experiment: 470 Kg of nitrogen 50 Kg of P2O5 and 3,100 Kg of K2O corresponds to 3,133 Kg of Chilean nitrate/ha 250 Kg of superphosphate and 5,160 Kg of muriate of potash Hence one cannot say that the action of vinasse is of a purely physical nature. In our opinion its outstanding action is due to: 1st raise in the pH value of the soil; 2nd addition of a tremendous amount of plant nutrients; 3rd supplying organic matter in a very finely divided state with all its benefical effects in soil structure, water holding capacity, adsorption of nutrients to prevent leaching, etc. A rotation experiment is now being carried out to study the residual effect of vinasse.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper relates the results of an experiment designed to study the comparative effects of several phosphates applied to corn crops. The following phosphates were applied to a latin square of 6x6: Latif (a rock phosphate), fospal, superphosphate, fertifos, hiperfosfato and serranafosfato (a fusion phosphate). The nutrients were employd at the rates of 200 kg of N (as Chilean nitrate), 200kg of K2O (as muriate of potash) and 200 kg of P205. To correct the acidity and to improve the poor physical conditions of the sandy soil studied limestone (450 kg/Ha) and cotton seed meal (900 kg/Ha) were added to all plots; liming was made one month in advance to the planting. In the second year, in the same place, the split-plot technique was used: half plot received only N and K20 whereas the other half received the same treatment as the year before. The results can be summarized as follows: 1. in the first year, superphosphate of lime, produced better results than the other phosphates; there was no significant difference among fertifos, serranafosfato, and hiperfosfato but these phosphates proved to be superior to fospal and Latif; 2. in the second year, superphosphate, fertifos and serranafosfato produced practically the same effect, being better than hiperfosfato, fospal, and Latif which did not differ signicantly; 3. the increase in yield due to the reapplication of phosphates to the half plots was not advantageous under an economic point of view; however, it is interesting to note that the yield was still benefited in spite of the heavy doses of phosphates applied the year before.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kikuio grass (Pennisetum clandestinum Hochst) is beyond any doubt, a pasture very important for farm animals; since its chemical composition is very similar to that of alfalfa, the present field trial was carried out; a randomized block design with 8 treatments was selected as follows: 1 N - P - K - Ca - Mg (complete manuring) 2 N - P - K - Ca----- (without Mg) 3 N - P - K-------Mg (without Ca) 4 ----P - K - Ca - Mg (without N) 5 N------K - Ca Mg (without P) 6 N - P - Ca - Mg (without K) 7 organic matter (without mineral fertilizers) 8 control Nitrogen was applied as NaN03 (topdressed) and as ammonium sulfate; P2O5 was given as superphosphate associated to bonemeal; K2O was applied as muriate, CaO as "sambaquis" (oyster shells); MgO was given as MgSO4 (topdressed). The source of organic matter was farmyard manure. As far yields are concerned the following observations were made: 1. treatment n. 7 was superior to all others; 2. considering the mineral fertilizers, good responses were due to N and P2O5; 3. the control yield was exceedingly poor, being inferior to all the others treatments; The chemical analyses revealed that: 1. the protein content decreased accordingly to this order: 7, 6, 5 and 1; treatment 4 (without N) gave the lowest protein content; 2. treatment n. 4 produced the highest fat content; treatment no. 7 ranked second; no. 8 gave the lowest fat content; 3. crude fiber: highest - treatment 7; lowest - 8; 4. ashes: the ashes content was higher in treatment 5; proprobably because the most abundant element in the ashes is K, the ash content of treatment 6 (no K) was very low; 5. non nitrogenous substances (determined by difference) - high in treatment 8 and low in treatment 7; 6. mineral elements in the ashes - the element omitted from a given treatment was very low in the grasses therein obtained; this shows the relative poverty of the soil in that element. As general remark the Authors suggest the use of farmyard manure in the fertilization of Kikuio grass; farmyard manure could probably substitute wither green manure or compost.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The results reported in this paper did not show statistical differences in production of seeds, number of plants and number of ears when corn fertilizer (combination of Chilean nitrate, superphosphate and potassium chloride) was applied either in the sowing furrow or in lateral furrows (one or both side). The treatments with fertilizer were better than the treatment without fertilizer used for comparisons. Cotton seed meal, used in combination with superphosphate and potassium chloride, placed in the sowing furrow, reduces statistically the number of plants in the row when compared with the treatments where applications were made only in lateral furrows. However, this reduction of plants did not affect significantly the number of ears and the production in the treatments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to the great importance of coffee to the Brazilian economy, a good deal of the work carried out in the "Laboratório de Isótopos", E. E. A. "Luiz de Queiroz", Piracicaba, S. Paulo, Brazil, was dedicated to the study of some problems involving that plant. The first one was designed to verify a few aspects of the control of zinc deficiency which is common in many types of soils in Brazil. An experiment conducted in nutrient solution showed that the leaf absorption of the radiozinc was eight times as high as the root uptake; the lower surface of the leaves is particularly suited for this kind of absorption. Among the heavy metal micronutrients, only iron did not affect the absorption of the radiozinc; manganese, copper, and molybdenum brought about a decrease of fifty per cent in total uptake. In another pot experiment in which two soils typical of the coffee growing regions were used, namely, a sandy soil called "arenito de Bauru" and a heavy one, "terra roxa", only O.l and 0.2 per cent of the activity supplied to the roots was recovered", respectively. This indicates that under field conditions the farmer should not attempt to correct zinc deficiency by applying zinc salts to the soil: leaf sprays should be used wherever necessary. In order to find out the most suitable way to supply phosphatic fertilizers to the coffee plant, under normal farm conditions, an experiment with tagged superphosphate was carried out with the following methods of distribution of this material: (1) topdressed in a circular area around the trees; (2) placed in the bottom of a 15 cm deep furrow made around the plant; (3) placed in a semicircular furrow, as in the previous treatment; (4) sprayed directly to the leaves. It was verified that in the first case, circa 10 per cent of the phosphorus in the leaves came from the superphosphate; for the other treatments, the results ware, respectively: 2.4, 1.7, and 38.0 per cent. It is interesting to mention that the first and the last methods of distribution were those less used by the farmers; now they are being introduced in many coffee plantations. In a previous trial it was demonstrated that urea sprays were an adequate way to correct nitrogen deficiency under field conditions. An experiment was then set up in which urea-C14 was used to study the metabolism of this fertilizer in coffee leaves. In was verified that in a 9 hours period circa 95 per cent of the urea supplied to the leaves had been absorbed. The distribution of the nitrogen of the urea was followed by standard chemical procedures. On the other hand the fate of the carbonic moiety was studied with the aid of the radiochromatographic technique. Thus, the incorporation of C14 in aminoacids, sugars and organic acids was ascertained. Data obtained in this work gave a definite support to the idea that in coffee leaves, as in a few other higher plants, a mechanism similar to the urea cycle of animals does exist.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to find out the best way to supply phosphorus to coffee plants when growing in "terra roxa misturada", a red soil with a high fixing capacity, tagged superphosphate was applied by the following procedures: (1) topdressed in a circular strip around the trees; (2) placed in the bottom of a circular furrow 15 cm deep; (3) placed in a semicircular furrow also 15 cm deep; (4) sprayed directly to the leaves. In each case 150 gms. of ordinary superphosphate tagged with H3 P32 O4 to give 5 X 10(9) c.p.m. were given to the two and half year old coffee plants. It was found that for the several treatments of the total phosphorus in the leaves the following values, on a per cent basis, came from the applied superphosphates: (1) topdressed 10.2 per cent, (2) circular furrow 2.4 per cent, (3) semicircular furrow 1.7 per cent, (4) sprayed 38.0 per cent; one can see, then, that methods (2) and (3) commonly used by the coffee planters are a very inefficient way to supply phosphorus in this type of soil. The remarkable foliar absorption was checked twice: a water culture experiment was carried out, the radiophosphorus being supplied by brushing it in the upper and lower surfaces of a given leaf; radioactivity was detected all over the plant as a result both of absorption and translocation; on the other hand, leaves collected from the sprayed trees were radioautographed; the radioautographs showed the pattern of distribution of the P32 which indicates true absorption rather than a surface contamination. In another locality, an experiment was caried out with 8 year old plants growing in "arenito de Bauru" which is a sandy soil with much less phosphorus fixing capacity. In this experiment the aim was to compare absorption of tagged superphosphate by trees growin under mulch against plants not receiving this treatment, The uptake of phosphorus was the same for both sets of plants. In both field experiments soil samples down to 15 cm in the profile were collected and its 0.2NHC1 soluble phosphorus was counted; rather significant values were observed mainly in the upper 5 cm layers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the data obtained for the growth of sugar cane, Variety Co 419, and the amount and rate of absorption of nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, and silicon, according to the age of the plant, in the soil and climate conditions of the state of S. Paulo, Brazil. An experiment was installed in the Estação Experimental de Cana de Açúcar "Dr. José Vizioli", at Piracicaba, state of S. Paulo, Brazil, and the soil "tèrra-roxa misturada" presented the following composition: Sand (more than 0,2 mm)........................................................................ 8.40 % Fine sand (from 0,2 to less than 0,02 mm)................................................. 24.90 % Silt (from 0,02 to less than 0,002 mm)...................................................... 16.40 % Clay (form 0,002 mm and less)................................................................ 50.20 % pH 10 g of soil and 25 ml of distilled water)..................................................... 5.20 %C (g of carbon per 100 g of soil)................................................................. 1.00 %N (g of nitrogen per 100 g of soil)............................................................... 0.15 P0(4)-³ (me. per 100 g of soil, soluble in 0,05 normal H2SO4) ............................... 0.06 K+ (exchangeable, me. per 100 g of soil)....... 0.18 Ca+² (exchangeable, me. per 100 g of soil)...... 2.00 Mg+² (exchangeable, me. per 100 g of soil)...... 0.66 The monthly rainfall and mean temperature from January 1956 to August 1957 are presented in Table 1, in Portuguese. The experiment consisted of 3 replications of the treatments: without fertilizer and with fertilizer (40 Kg of N, from ammonium sulfate; 100 Kg of P(2)0(5) from superphosphate and 40 Kg K2 O, from potassium chloride). Four complete stools (stalks and leaves) were harvested from each treatment, and the plants separated in stalks and leaves, weighed, dried and analysed every month from 6 up to 15 months of age. The data obtained for fresh and dry matter production are presented in table 2, and in figure land 2, in Portuguese. The curves for fresh and dry matter production showed that fertilized and no fertilized sugar cane with 6 months of age presents only 5% of its total weight at 15 months of age. The most intense period of growth in this experiment is located, between 8 and 12 months of age, that is between December 1956 and April 1957. The dry matter production of sugar cane with 8 and 12 months of age was, respectively, 12,5% and 87,5% of the total weight at 15 months of age. The growth of sugar cane in relation to its age follows a sigmoid curve, according to the figures 1, 2 and 3. The increase of dry matter production promoted by using fertilizer was 62,5% when sugar cane was 15 months of age. The concentration of the elements (tables 4 and 5 in Portuguese) present a general trend of decreasing as the cane grows older. In the stalks this is true for all elements studied in this experiment. But in the leaves, somme elements, like sulfur and silicon, appears to increase with the increasing of age. Others, like calcium and magnesium do not show large variations, and finally a third group, formed by nitrogen, phosphorus and potassium seems to decrease at the beginning and later presents a light increasing. The concentration of the elements was higher in the leaves than in the stalks from 6 up to 15 months of age. There were some exceptions. Potassium, magnesium and sulfur were higher in the stalks than in the leaves from 6 up to 8 or 9 months of age. After 9 months, the leaves presented more potassium, magnesium and sulfur than the stalks. The percentage of nitrogen in the leaves was lower in the plants that received fertilizer than in the plants without fertilizer with 6, 7, 8, 10, 11 and 13 months of age. This can be explained by "dilution effect". The uptake of elements by 4 stools (stalks and leaves) of sugar cane according to the plant age is showed in table 6, in Portuguese. The absorption of all studied elements, nitrogen, phosphorus, potassium, calcium, magnesium, sulfur and silicon, was higher in plants that received fertilizer. The trend of uptake of nitrogen and potassium is similar to the trend of production of dry matter, that is, the maximum absorption of those two nutrients occurs between 9 and 13 months of age. Finaly, the maxima amounts of elements absorbed by 4 stools (stalks and leaves) of sugar cane plants that received fertilizer are condensed in the following table: Element Maximum absorption in grams Age of the plants in months Nitrogen (N) 81.0 14 Phosphorus (P) 6.8 15 Potassium (K) 81.5 15 Calcium (Ca) 19.2 15 Magnesium (Mg) 13.9 13 Sulfur (S) 9.3 15 Silicon (Si) 61.8 15 It is very interesting to note the low absorption of phosphorus even with 100 kg of P2O5 per hectare, aplied as superphosphate. The uptake of phosphorus was lower than calcium, magnesium and sulfur. Also, it is noteworthy the large amount of silicon absorbed by sugar cane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to study the phosphorus availability from various phosphates fertilizers an experiment was performed according to the biological seedling method of Neubauer. The physico-chemical properties of the soil "terra roxa-misturada", a red soil derived from basaltic rocks are given in the Portuguese text. Rice (Oryza sativa, L.) instead of rye (Secale cereale, L.) was used. Five replications of each of the following treatments were made: 1 - check, with 350 g of sand 2 - 350 g of sand plus 100 g of soil 3 - 350 g of sand and plus 100 g of soil plus 40 mg of P2O5, from superphosphate. 4 - 350 g of sand plus 100 g of soil plus 40 mg of P2O5. from Olinda (Brazil) phosphorite. 5 - 350 g of sand plus 100 g of soil plus 40 mg of P2O5 from Florida (U. S. A.) phosphorite. 6 - 350 g os sand plus 100 g of soil plus 40 mg of P2O5 from Hyperphosphate, a commertial name of a North African (Gafsa) phosphorite. 7 - 350 g of sand plus 100 g of soil plus 40 mg of P2O5 from Araxá (Brazil) apatite. After 18 days of growth, the roots and tops of rice seedlings were harvested and analysed for phosphorus, and the results are summarized in table 1. Table 1 - Milligrams of P2O5 determined in rice seedlings. Treatments Mean of 5 replications mg of P2O5 1 ..................... 24.196 2 ..................... 23.850 3 ..................... 30.724 4 ..................... 27.620 5 ..................... 27.480 6..................... 30.210 7 ..................... 26.032 The least significant difference at the 5% level by Tukey's procedure for comparisons among the treatments means is 1.365 mg of P(2)0. It is interesting to observe that rice plants did not take any phosphorus from the soil according to he data of the treatments n.° 1 and n.° 2. This can be explained by the high phosphorus fixing capacity of the soil "terra roxa misturada".

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The status of zinc in sugar cane, variety Co 419, troughout its life cyle, was studid in samples cut monthly, from the 6th to 15th month, from an experiment carried on under the conditions of soil and climate prevailing in Piracicaba, State of São Paulo, Brazil. The experiment consisted of 6plots, 3 fertilized and 3 unfertilized. The fertilized ones received 40 kg of N (ammonium sulfate), 100 kg P2O5 (superphosphate) and 40 kg K2O (potassium cloride) per hectare, just before planting. The zinc content was determined by the Zincon method, after separation of zinc from other ions by means of the ion Exchange Resin III, Merck. The results obtained show that there was a tendency to decrease the zinc level in the stalks, whereas it kept more or less constant in the leaves; there was an exception in January, when the zinc level in the stalks had a sharp raise: 38-90-20 and 28-60-23 ppm for the fertilized an unfertilized treatments. There was a parallelism in the absorption of zinc by the plants from 4 hills of both treatments, through the whole - plantcycle but, the total amount taken up was higher with the fertilized plot due to its greater mass production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the results obtained from the determination of iron in sugar cane according to the age of the plant, in the soil and climate conditions of the state of S. Paulo, Brazil. The iron was determined by 1-10- phenanthroline method, in samples cut monthly from 7th to 15th month from an experiment consisted de 3 plots fertilized with amonium sulfate, superphosphate and potassium cloride. The concentration of iron in the stalks and in the leaves varies according to the age of the plant. A ton of fresh stalks 15 months old contains 78,71 g of iron.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper the authors describe the results obtained from the determination of molybdenum in sugar cane plant, grown in soils and climate prevailing in Piracicaba, State of São Paulo, Brazil. The molybdenum was determined in samples cut monthly from the 8th to 14th month, from an experiment consisting of 6 plots, 3 fertilized and 3 unfertilized. The fertilized treatment received 40 kg N (ammonium sulfate) 100 kg P2O3, (superphosphate) and 40 kg K2O (potassium chloride) per hectare, just before planting. Molybdenum was determined by thiocyanate-stannous chloride method, using carbon tetrachloride-butyl alcohol misture, for extrating the colored complex. The results obtained show a parallelism in the absorption of molybdenum by the plants of both treatments. The concentration of molybdenum in the stalks have a tendency to decrease, where as it kept more or less constant in leaves, with a exception in the 14° month when it rised probable because of a migration of molybdenum of the stalks to the leaves. The total amount molybdenum taken up was higher with the fertilized plot due its greater mass prodution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Tagged superphosphate was applied to 2.5 year old passion fruit plants from a commercial plantation established in a sandy loam. 2. 100 grams of the fertilizer were distributed in the following ways: in a circular furrow 20 cm around the plant 40 cm from the stems; in a circular strip 10 cm wide, 40 cm from the stems; in six holes around the plants, 40 cm from the stems 20 cm deep, 2.5 cm in diameter. 3. 10 grams of the fertilizer in 11 of water were sprayed to the leaves. 4. Three weeks after the treatments were made, leaf samples were taken for analysis. 5. Determinations of specific activities both in the leaves and in the fertilizer used have shown that R in the plant was derived from the superphosphate in the following relative proportions (by making the first treatment equal to 100): circular furrow = 100; circular strip = 120; holes = 30; foliar spray = 230.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is well known that the culture media used in the presumptive diagnosis of suspiciuous colonies from plates inoculated with stools for isolation of enteric organisms do not always correctly indicate the major groups of enterobacteria. In an effort to obtain a medium affording more exact indications, several media (1-9) have been tested. Modifications of some of these media have also been tested with the result that a satisfactory modification of Monteverde's medium was finaly selected. This proved to be most satisfactory, affording, as a result of only one inoculation, a complete series of basic indications. The modification involves changes in the formula, in the method of preparation and in the manner of storage. The formulae are: A. Thymol blue indicator: NaOH 0.1/N .............. 34.4 ml; Thymol blue .............. 1.6 g; Water .................... 65.6 ml. B. Andrade's indicator. C. Urea and sugar solution: Urea ..................... 20 g; Lactose ................... 30 g; Sucrose ................... 30 g; Water .................... 100 ml. The mixture (C.) should be warmed slightly in order to dissolve the ingredients rapidly. Sterilise by filtration (Seitz). Keep stock in refrigeratior. The modification of Monteverde's medium is prepared in two parts. Semi-solid part - Peptone (Difco) 2.0 g; NaCl 0.5 g; Agar 0.5 g; Water 100.0 ml. Boil to dissolve the ingredients. Adjust pH with NaOH to 7.3-7.4. Boil again for precipitation. Filter through cotton. Ad indicators "A" 0.3 ml and "B" 1.0 ml. Sterilise in autoclave 115ºC, 15 minutes in amounts not higher than 200 ml. Just before using, add solution "C" asseptically in amounts of 10 ml to 200 ml of the melted semi-solid medium, maintained at 48-50ºC. Solid part - Peptone (Difco) 1.5 g; Trypticase (BBL) 0.5 g; Agar 2.0 g; Water 100,00 ml. Boil to dissolve the ingredients. Adjust pH with NaOH to 7.3-7.4. Boils again. Filter through cotton. Add indicators "A" 0.3 ml and "B" 1.0 ml; ferrous ammonium sulfate 0.02 g; sodiun thiosulfate 0.02 g. Sterilise in autoclave 115ºC, 15 minutes in amounts not higher than 200 ml. Just before using, add solution "C" asseptically in amounts of 10 ml to 200 ml of the melted solid medium, maintained at 48-50ºC. Final medium - The semi-solid part is dispensed first (tubes about 12 x 120 mm) in 2.5 ml amounts and left to harden at room temperature, in vertical position. The solid part is dispensed over the hardened semi-solid one in amounts from 2.0 ml to 2.5 ml and left to harden in slant position, affording a butt of 12 to 15 mm. The tubes of medium should be subjected to a sterility test in the incubator, overnight. Tubes showing spontaneous gas bubbles (air) should then be discarded. The medium should be stored in the incubator (37ºC), for not more than 2 to 4 days. Storage of the tubes in the ice-box produces the absorption of air which is released as bubbles when the tubes are incubated at 37ºC after inoculation. This fact confirmed the observation of ARCHAMBAULT & McCRADY (10) who worked with liquid media and the aplication of their observation was found to be essential to the proper working conditions of this double-layer medium. Inoculation - The inoculation is made by means of a long straight needle, as is usually done on the triple sugar, but the needel should penetrate only to about half of the height of the semi-solid column. Indol detection - After inoculation, a strip of sterelized filter papaer previously moistened with Ehrlich's reagent, is suspended above the surface of the medium, being held between the cotton plug and the tube. Indications given - In addition to providing a mass of organisms on the slant for serological invetigations, the medium gives the following indications: 1. Acid from lactose and/or sucrose (red, of yellowsh with strains which reduce the indicators). 2. Gas from lactose and/or sucrose (bubbles). 3. H[2]S production, observed on the solid part (black). 4. Motility observed on the semi-solid part (tubidity). 5. Urease production, observed on solid and semi-solid parts (blue). 6. Indol production, observed on the strip of filter paper (red or purplish). Indol production is not observed with indol positive strains which rapidly acidify the surface o the slant, and the use of oxalic acid has proved to give less sensitive reaction (11). Reading of results - In most cases overnight incubation is enough; sometimes the reactions appear within only a few hours of incubation, affording a definitive orientation of the diagnosis. With some cultures it is necessary to observe the medium during 48 hours of incubation. A description showing typical differential reaction follows: Salmonella: Color of the medium unchanged, with blackening of the solid part when H[2]S is positive. The slant tends to alkalinity (greenish of bluish). Gas always absent. Indol negative. Motility positive or negative. Shigella: Color of the medium unchanged at the beginning of incubation period, but acquiring a red color when the strain is late lactose/sucrose positive. Slant tending to alkalinity (greenish or purplish). Indol positive or negative. Motility, gas and H[2]S always negative. Proteus: Color of the medium generally changes entirely to blue or sometimes to green (urease positive delayed), with blackening of solid part when H[2]S is positive. Motility positive of negative. Indol positive. Gas positive or negative. The strains which attack rapidly sucrose may give a yellow-greenish color to the medium. Sometimes the intense blue color of the medium renders difficult the reading of the H[2]S production. Escherichiae and Klebsiellae: Color of the medium red or yellow (acid) with great and rapid production of gas. Motility positive or negative. Indol generally impossible to observe. Paracoli: Those lactose of sucrose positive give the same reaction as Esherichia. Those lactose or sucrose negatives give the same reactions as Salmonellae. Sometimes indol positive and H[2]S negative. Pseudomonas: Color of the medium unchanged. The slant tends to alkalinity. It is impossible to observe motility because there is no growth in the bottom. Alkaligenes: Color of the medium unchanged. The slant tends to alkalinity. The medium does not alter the antigenic properties of the strains and with the mass of organisms on the slant we can make the serologic diagnosis. It is admitted that this medium is somewhat more laborious to prepare than others used for similar purposes. Nevertheless it can give informations generally obtained by two or three other media. Its use represents much saving in time, labor and material, and we suggest it for routine laboratory work in which a quick presumptive preliminary grouping of enteric organisms is needed.