928 resultados para Transient
Resumo:
Numerical simulation experiments give insight into the evolving energy partitioning during high-strain torsion experiments of calcite. Our numerical experiments are designed to derive a generic macroscopic grain size sensitive flow law capable of describing the full evolution from the transient regime to steady state. The transient regime is crucial for understanding the importance of micro structural processes that may lead to strain localization phenomena in deforming materials. This is particularly important in geological and geodynamic applications where the phenomenon of strain localization happens outside the time frame that can be observed under controlled laboratory conditions. Ourmethod is based on an extension of the paleowattmeter approach to the transient regime. We add an empirical hardening law using the Ramberg-Osgood approximation and assess the experiments by an evolution test function of stored over dissipated energy (lambda factor). Parameter studies of, strain hardening, dislocation creep parameter, strain rates, temperature, and lambda factor as well asmesh sensitivity are presented to explore the sensitivity of the newly derived transient/steady state flow law. Our analysis can be seen as one of the first steps in a hybrid computational-laboratory-field modeling workflow. The analysis could be improved through independent verifications by thermographic analysis in physical laboratory experiments to independently assess lambda factor evolution under laboratory conditions.
Resumo:
The development of northern high-latitude peatlands played an important role in the carbon (C) balance of the land biosphere since the Last Glacial Maximum (LGM). At present, carbon storage in northern peatlands is substantial and estimated to be 500 ± 100 Pg C (1 Pg C = 1015 g C). Here, we develop and apply a peatland module embedded in a dynamic global vegetation and land surface process model (LPX-Bern 1.0). The peatland module features a dynamic nitrogen cycle, a dynamic C transfer between peatland acrotelm (upper oxic layer) and catotelm (deep anoxic layer), hydrology- and temperature-dependent respiration rates, and peatland specific plant functional types. Nitrogen limitation down-regulates average modern net primary productivity over peatlands by about half. Decadal acrotelm-to-catotelm C fluxes vary between −20 and +50 g C m−2 yr−1 over the Holocene. Key model parameters are calibrated with reconstructed peat accumulation rates from peat-core data. The model reproduces the major features of the peat core data and of the observation-based modern circumpolar soil carbon distribution. Results from a set of simulations for possible evolutions of northern peat development and areal extent show that soil C stocks in modern peatlands increased by 365–550 Pg C since the LGM, of which 175–272 Pg C accumulated between 11 and 5 kyr BP. Furthermore, our simulations suggest a persistent C sequestration rate of 35–50 Pg C per 1000 yr in present-day peatlands under current climate conditions, and that this C sink could either sustain or turn towards a source by 2100 AD depending on climate trajectories as projected for different representative greenhouse gas concentration pathways.
Resumo:
The interaction between sensory rhodopsin II (SRII) and its transducer HtrII was studied by the time-resolved laser-induced transient grating method using the D75N mutant of SRII, which exhibits minimal visible light absorption changes during its photocycle, but mediates normal phototaxis responses. Flash-induced transient absorption spectra of transducer-free D75N and D75N joined to 120 amino-acid residues of the N-terminal part of the SRII transducer protein HtrII (DeltaHtrII) showed only one spectrally distinct K-like intermediate in their photocycles, but the transient grating method resolved four intermediates (K(1)-K(4)) distinct in their volumes. D75N bound to HtrII exhibited one additional slower kinetic species, which persists after complete recovery of the initial state as assessed by absorption changes in the UV-visible region. The kinetics indicate a conformationally changed form of the transducer portion (designated Tr*), which persists after the photoreceptor returns to the unphotolyzed state. The largest conformational change in the DeltaHtrII portion was found to cause a DeltaHtrII-dependent increase in volume rising in 8 micros in the K(4) state and a drastic decrease in the diffusion coefficient (D) of K(4) relatively to those of the unphotolyzed state and Tr*. The magnitude of the decrease in D indicates a large structural change, presumably in the solvent-exposed HAMP domain of DeltaHtrII, where rearrangement of interacting molecules in the solvent would substantially change friction between the protein and the solvent.
Resumo:
Familial hemiplegic migraine type 1 (FHM1) is an autosomal dominant subtype of migraine with aura that is associated with hemiparesis. As with other types of migraine, it affects women more frequently than men. FHM1 is caused by mutations in the CACNA1A gene, which encodes the alpha1A subunit of Cav2.1 channels; the R192Q mutation in CACNA1A causes a mild form of FHM1, whereas the S218L mutation causes a severe, often lethal phenotype. Spreading depression (SD), a slowly propagating neuronal and glial cell depolarization that leads to depression of neuronal activity, is the most likely cause of migraine aura. Here, we have shown that transgenic mice expressing R192Q or S218L FHM1 mutations have increased SD frequency and propagation speed; enhanced corticostriatal propagation; and, similar to the human FHM1 phenotype, more severe and prolonged post-SD neurological deficits. The susceptibility to SD and neurological deficits is affected by allele dosage and is higher in S218L than R192Q mutants. Further, female S218L and R192Q mutant mice were more susceptible to SD and neurological deficits than males. This sex difference was abrogated by ovariectomy and senescence and was partially restored by estrogen replacement, implicating ovarian hormones in the observed sex differences in humans with FHM1. These findings demonstrate that genetic and hormonal factors modulate susceptibility to SD and neurological deficits in FHM1 mutant mice, providing a potential mechanism for the phenotypic diversity of human migraine and aura.
Resumo:
We present a series of three-dimensional numerical models investigating the effects of metamorphic strengthening and weakening on the geodynamic evolution of convergent orogens that are constrained by observations from an exposed mid-crustal section in the New England Appalachians. The natural mid-crustal section records evidence for spatially and temporally variable mid-crustal strength as a function of metamorphic grade during prograde polymetamorphism. Our models address changes in strain rate partitioning and topographic uplift as a function of strengthening/weakening in the middle crust, as well as the resultant changes in deformation kinematics and potential exhumation patterns of high-grade metamorphic rock. Results suggest that strengthening leads to strain rate partitioning around the zone and suppressed topographic uplift rates whereas weakening leads to strain rate partitioning into the zone and enhanced topographic uplift rates. Deformation kinematics recorded in the orogen are also affected by strengthening/weakening, with complete reversals in shear sense occurring as a function of strengthening/weakening without changes in plate boundary kinematics.
Resumo:
BACKGROUND Elevated resting heart rate is known to be detrimental to morbidity and mortality in cardiovascular disease, though its effect in patients with ischemic stroke is unclear. We analyzed the effect of baseline resting heart rate on myocardial infarction (MI) in patients with a recent noncardioembolic cerebral ischemic event participating in PERFORM. METHODS We compared fatal or nonfatal MI using adjusted Cox proportional hazards models for PERFORM patients with baseline heart rate <70 bpm (n=8178) or ≥70 bpm (n=10,802). In addition, heart rate was analyzed as a continuous variable. Other cerebrovascular and cardiovascular outcomes were also explored. RESULTS Heart rate ≥70 bpm was associated with increased relative risk for fatal or nonfatal MI (HR 1.32, 95% CI 1.03-1.69, P=0.029). For every 5-bpm increase in heart rate, there was an increase in relative risk for fatal and nonfatal MI (11.3%, P=0.0002). Heart rate ≥70 bpm was also associated with increased relative risk for a composite of fatal or nonfatal ischemic stroke, fatal or nonfatal MI, or other vascular death (excluding hemorrhagic death) (P<0001); vascular death (P<0001); all-cause mortality (P<0001); and fatal or nonfatal stroke (P=0.04). For every 5-bpm increase in heart rate, there were increases in relative risk for fatal or nonfatal ischemic stroke, fatal or nonfatal MI, or other vascular death (4.7%, P<0.0001), vascular death (11.0%, P<0.0001), all-cause mortality (8.0%, P<0.0001), and fatal and nonfatal stroke (2.4%, P=0.057). CONCLUSION Elevated heart rate ≥70 bpm places patients with a noncardioembolic cerebral ischemic event at increased risk for MI.
Resumo:
Syncope describes a sudden and brief transient loss of consciousness (TLOC) with postural failure due to cerebral global hypoperfusion. The term TLOC is used when the cause is either unrelated to cerebral hypoperfusion or is unknown. The most common causes of syncopal TLOC include: (1) cardiogenic syncope (cardiac arrhythmias, structural cardiac diseases, others); (2) orthostatic hypotension (due to drugs, hypovolemia, primary or secondary autonomic failure, others); (3) neurally mediated syncope (cardioinhibitory, vasodepressor, and mixed forms). Rarely neurologic disorders (such as epilepsy, transient ischemic attacks, and the subclavian steal syndrome) can lead to cerebal hypoperfusion and syncope. Nonsyncopal TLOC may be due to neurologic (epilepsy, sleep attacks, and other states with fluctuating vigilance), medical (hypoglycemia, drugs), psychiatric, or post-traumatic disorders. Basic diagnostic workup of TLOC includes a thorough history and physical examination, and a 12-lead electrocardiogram (ECG). Blood testing, electroencephalogram (EEG), magnetic resonance imaging (MRI) of the brain, echocardiography, head-up tilt test, carotid sinus massage, Holter monitoring, and loop recorders should be obtained only in specific contexts. Management strategies involve pharmacologic and nonpharmacologic interventions, and cardiac pacing.
Resumo:
We describe the case of a 35-year-old female patient who suffered from fulminant tick-borne encephalitis and subsequently died. Remarkable about this case was that the woman was not living in an endemic area and that the disease occurred outside the usual season. Furthermore, this indicates that an increase in transmission of tick-borne encephalitis can be expected outside the classical endemic areas in higher altitudes, possibly as a consequence of climate changes.
Resumo:
User comfort during simulated driving is of key importance, since reduced comfort can confound the experiment and increase dropout rates. A common comfort-affecting factor is simulator-related transient adverse health effect (SHE). In this study, we propose and evaluate methods to adapt a virtual driving scene to reduce SHEs. In contrast to the manufacturer-provided high-sensory conflict scene (high-SCS), we developed a low-sensory conflict scene (low-SCS). Twenty young, healthy participants drove in both the high-SCS and the low-SCS scene for 10 min on two different days (same time of day, randomized order). Before and after driving, participants rated SHEs by completing the Simulator Sickness Questionnaire (SSQ). During driving, several physiological parameters were recorded. After driving in the high-SCS, the SSQ score increased in average by 129.4 (122.9 %, p = 0.002) compared to an increase of 5.0 (3.4 %, p = 0.878) after driving in the low-SCS. In the low-SCS, skin conductance decreased by 13.8 % (p < 0.01) and saccade amplitudes increased by 16.1 % (p < 0.01). Results show that the investigated methods reduce SHEs in a younger population, and the low-SCS is well accepted by the users. We expect that these measures will improve user comfort.
Resumo:
Acquired Fanconi syndrome is characterized by inappropriate urinary loss of amino acids, bicarbonate, electrolytes, and water. It has recently been described in dogs fed chicken jerky treats from China, a new differential diagnosis to the classical inciting infectious diseases (e.g. leptospirosis, pyelonephritis) and toxins. A dog fed exclusively chicken jerky treats purchased in Switzerland was presented to our clinic with severe polyuria, polydipsia and profound electrolyte and acid base disturbances. Other inciting causes of Fanconi syndrome were ruled out. The requirement of a very intensive supportive treatment in this dog stands in contrast to treatment of chronic forms of Fanconi syndrome as described in the Basenji. This intensive therapy and the associated monitoring can be a real challenge and a limiting factor for the prognosis of acquired Fanconi syndrome. Veterinarians should be aware of the risk of excessive feeding of chicken jerky treats.
Resumo:
BACKGROUND AND PURPOSE To assess the association of lesion location and risk of aspiration and to establish predictors of transient versus extended risk of aspiration after supratentorial ischemic stroke. METHODS Atlas-based localization analysis was performed in consecutive patients with MRI-proven first-time acute supratentorial ischemic stroke. Standardized swallowing assessment was carried out within 8±18 hours and 7.8±1.2 days after admission. RESULTS In a prospective, longitudinal analysis, 34 of 94 patients (36%) were classified as having acute risk of aspiration, which was extended (≥7 days) or transient (<7 days) in 17 cases. There were no between-group differences in age, sex, cause of stroke, risk factors, prestroke disability, lesion side, or the degree of age-related white-matter changes. Correcting for stroke volume and National Institutes of Health Stroke Scale with a multiple logistic regression model, significant adjusted odds ratios in favor of acute risk of aspiration were demonstrated for the internal capsule (adjusted odds ratio, 6.2; P<0.002) and the insular cortex (adjusted odds ratio, 4.8; P<0.003). In a multivariate model of extended versus transient risk of aspiration, combined lesions of the frontal operculum and insular cortex was the only significant independent predictor of poor recovery (adjusted odds ratio, 33.8; P<0.008). CONCLUSIONS Lesions of the insular cortex and the internal capsule are significantly associated with acute risk of aspiration after stroke. Combined ischemic infarctions of the frontal operculum and the insular cortex are likely to cause extended risk of aspiration in stroke patients, whereas risk of aspiration tends to be transient in subcortical stroke.
Resumo:
BACKGROUND AND PURPOSE Copeptin has been associated with recurrent cerebrovascular events after transient ischemic attack (TIA). In an independent cohort, we evaluated copeptin for the prediction of recurrent cerebrovascular events within 3 months after TIA and assessed the incremental value of copeptin compared with the ABCD2 (age, blood, clinical features of TIA, duration of symptoms, presence of diabetes mellitus) and ABCD3-I (ABCD2, dual TIA [the presence of ≥2 TIA symptoms within 7 days], imaging [the presence of abnormal findings on neuroimaging]) scores. METHODS This prospective, multicenter cohort study was conducted at 3 tertiary Stroke Centers in Switzerland and Germany. RESULTS From March 2009 through April 2011, we included 302 patients with TIA admitted within 24 hours from symptom onset. Of 28 patients with a recurrent cerebrovascular event within 3 months (stroke or TIA), 11 patients had a stroke. Although the association of copeptin with recurrent cerebrovascular events was not significant, the association with stroke alone as end point was significant. After adjusting for the ABCD2 score, a 10-fold increase in copeptin levels was associated with an odds ratio for stroke of 3.39 (95% confidence interval, 1.28-8.96; P=0.01). After addition of copeptin to the ABCD2 score, the area under the curve of the ABCD2 score improved from 0.60 (95% confidence interval, 0.46-0.74) to 0.74 (95% confidence interval, 0.60-0.88, P=0.02). In patients with MRI (n=223), the area under the curve of the ABCD3-I score increased in similar magnitude, although not significantly. Based on copeptin, 31.2% of patients were correctly reclassified across the risk categories of the ABCD2 score (net reclassification improvement; P=0.17). CONCLUSIONS Copeptin improved the prognostic value of the ABCD2 score for the prediction of stroke but not TIA, and it may help clinicians in refining risk stratification for patients with TIA. CLINICAL TRIAL REGISTRATION URL http://www.clinicaltrials.gov. Unique identifier: NCT00878813.
Resumo:
BACKGROUND AND PURPOSE Visit-to-visit variability in systolic blood pressure (SBP) is associated with an increased risk of stroke and was reduced in randomized trials by calcium channel blockers and diuretics but not by renin-angiotensin system inhibitors. However, time of day effects could not be determined. Day-to-day variability on home BP readings predicts stroke risk and potentially offers a practical method of monitoring response to variability-directed treatment. METHODS SBP mean, maximum, and variability (coefficient of variation=SD/mean) were determined in 500 consecutive transient ischemic attack or minor stroke patients on 1-month home BP monitoring (3 BPs, 3× daily). Hypertension was treated to a standard protocol. Differences in SBP variability from 3 to 10 days before to 8 to 15 days after starting or increasing calcium channel blockers/diuretics versus renin-angiotensin system inhibitors versus both were compared by general linear models, adjusted for risk factors and baseline BP. RESULTS Among 288 eligible interventions, variability in SBP was reduced after increased treatment with calcium channel blockers/diuretics versus both versus renin-angiotensin system inhibitors (-4.0 versus 6.9 versus 7.8%; P=0.015), primarily because of effects on maximum SBP (-4.6 versus -1.0 versus -1.0%; P=0.001), with no differences in effect on mean SBP. Class differences were greatest for early-morning SBP variability (3.6 versus 17.0 versus 38.3; P=0.002) and maximum (-4.8 versus -2.0 versus -0.7; P=0.001), with no effect on midmorning (P=0.29), evening (P=0.65), or diurnal variability (P=0.92). CONCLUSIONS After transient ischemic attack or minor stroke, calcium channel blockers and diuretics reduced variability and maximum home SBP, primarily because of effects on morning readings. Home BP readings enable monitoring of response to SBP variability-directed treatment in patients with recent cerebrovascular events.