923 resultados para Torque Output
Resumo:
Arterial pressure-based cardiac output monitors (APCOs) are increasingly used as alternatives to thermodilution. Validation of these evolving technologies in high-risk surgery is still ongoing. In liver transplantation, FloTrac-Vigileo (Edwards Lifesciences) has limited correlation with thermodilution, whereas LiDCO Plus (LiDCO Ltd.) has not been tested intraoperatively. Our goal was to directly compare the 2 proprietary APCO algorithms as alternatives to pulmonary artery catheter thermodilution in orthotopic liver transplantation (OLT). The cardiac index (CI) was measured simultaneously in 20 OLT patients at prospectively defined surgical landmarks with the LiDCO Plus monitor (CI(L)) and the FloTrac-Vigileo monitor (CI(V)). LiDCO Plus was calibrated according to the manufacturer's instructions. FloTrac-Vigileo did not require calibration. The reference CI was derived from pulmonary artery catheter intermittent thermodilution (CI(TD)). CI(V)-CI(TD) bias ranged from -1.38 (95% confidence interval = -2.02 to -0.75 L/minute/m(2), P = 0.02) to -2.51 L/minute/m(2) (95% confidence interval = -3.36 to -1.65 L/minute/m(2), P < 0.001), and CI(L)-CI(TD) bias ranged from -0.65 (95% confidence interval = -1.29 to -0.01 L/minute/m(2), P = 0.047) to -1.48 L/minute/m(2) (95% confidence interval = -2.37 to -0.60 L/minute/m(2), P < 0.01). For both APCOs, bias to CI(TD) was correlated with the systemic vascular resistance index, with a stronger dependence for FloTrac-Vigileo. The capability of the APCOs for tracking changes in CI(TD) was assessed with a 4-quadrant plot for directional changes and with receiver operating characteristic curves for specificity and sensitivity. The performance of both APCOs was poor in detecting increases and fair in detecting decreases in CI(TD). In conclusion, the calibrated and uncalibrated APCOs perform differently during OLT. Although the calibrated APCO is less influenced by changes in the systemic vascular resistance, neither device can be used interchangeably with thermodilution to monitor cardiac output during liver transplantation.
Resumo:
Induced mild hypothermia after cardiac arrest interferes with clinical assessment of the cardiovascular status of patients. In this situation, non-invasive cardiac output measurement could be useful. Unfortunately, arterial pulse contour is altered by temperature, and the performance of devices using arterial blood pressure contour analysis to derive cardiac output may be insufficient.
Resumo:
Introduction Acute hemodynamic instability increases morbidity and mortality. We investigated whether early non-invasive cardiac output monitoring enhances hemodynamic stabilization and improves outcome. Methods A multicenter, randomized controlled trial was conducted in three European university hospital intensive care units in 2006 and 2007. A total of 388 hemodynamically unstable patients identified during their first six hours in the intensive care unit (ICU) were randomized to receive either non-invasive cardiac output monitoring for 24 hrs (minimally invasive cardiac output/MICO group; n = 201) or usual care (control group; n = 187). The main outcome measure was the proportion of patients achieving hemodynamic stability within six hours of starting the study. Results The number of hemodynamic instability criteria at baseline (MICO group mean 2.0 (SD 1.0), control group 1.8 (1.0); P = .06) and severity of illness (SAPS II score; MICO group 48 (18), control group 48 (15); P = .86)) were similar. At 6 hrs, 45 patients (22%) in the MICO group and 52 patients (28%) in the control group were hemodynamically stable (mean difference 5%; 95% confidence interval of the difference -3 to 14%; P = .24). Hemodynamic support with fluids and vasoactive drugs, and pulmonary artery catheter use (MICO group: 19%, control group: 26%; P = .11) were similar in the two groups. The median length of ICU stay was 2.0 (interquartile range 1.2 to 4.6) days in the MICO group and 2.5 (1.1 to 5.0) days in the control group (P = .38). The hospital mortality was 26% in the MICO group and 21% in the control group (P = .34). Conclusions Minimally-invasive cardiac output monitoring added to usual care does not facilitate early hemodynamic stabilization in the ICU, nor does it alter the hemodynamic support or outcome. Our results emphasize the need to evaluate technologies used to measure stroke volume and cardiac output--especially their impact on the process of care--before any large-scale outcome studies are attempted.
Resumo:
Failing cerebral blood flow (CBF) autoregulation may contribute to cerebral damage after traumatic brain injury (TBI). The purpose of this study was to describe the time course of CO(2)-dependent vasoreactivity, measured as CBF velocity in response to hyperventilation (vasomotor reactivity [VMR] index). We included 13 patients who had had severe TBI, 8 of whom received norepinephrine (NE) based on clinical indication. In these patients, measurements were also performed after dobutamine administration, with a goal of increasing cardiac output by 30%. Blood flow velocity was measured with transcranial Doppler ultrasound in both hemispheres. All patients except one had an abnormal VMR index in at least one hemisphere within the first 24 h after TBI. In those patients who did not receive catecholamines, mean VMR index recovered within the first 48 to 72 h. In contrast, in patients who received NE within the first 48 h period, VMR index did not recover on the second day. Cardiac output and mean CBF velocity increased significantly during dobutamine administration, but VMR index did not change significantly. In conclusion, CO(2) vasomotor reactivity was abnormal in the first 24 h after TBI in most of the patients, but recovered within 48 h in those patients who did not receive NE, in contrast to those eventually receiving the drug. Addition of dobutamine to NE had variable but overall insignificant effects on CO(2) vasomotor reactivity.
Resumo:
Fetal echocardiography was initially used to diagnose structural heart disease, but recent interest has focused on functional assessment. Effects of extracardiac conditions on the cardiac function such as volume overload (in the recipient in twin-twin transfusion syndrome), a hyperdynamic circulation (arterio-venous malformation), cardiac compression (diaphragmatic hernia, lung tumours) and increased placental resistance (intrauterine growth restriction and placental insufficiency) can be studied by ultrasound and may guide decisions for intervention or delivery. A variety of functional tests can be used, but there is no single clinical standard. For some specific conditions, however, certain tests have shown diagnostic value.
Resumo:
In multiple sclerosis (MS), fatigue is a common and often disabling symptom. It has multiple causes with central motor fatigue playing an important role.
Resumo:
OBJECTIVE: To determine fluid retention, glomerular filtration rate, and urine output in dogs anesthetized for a surgical orthopedic procedure. ANIMALS: 23 dogs treated with a tibial plateau leveling osteotomy. PROCEDURES: 12 dogs were used as a control group. Cardiac output was measured in 5 dogs, and 6 dogs received carprofen for at least 14 days. Dogs received oxymorphone, atropine, propofol, and isoflurane for anesthesia (duration, 4 hours). Urine and blood samples were obtained for analysis every 30 minutes. Lactated Ringer's solution was administered at 10 mL/kg/h. Urine output was measured and glomerular filtration rate was estimated. Fluid retention was measured by use of body weight, fluid balance, and bioimpedance spectroscopy. RESULTS: No difference was found among control, cardiac output, or carprofen groups, so data were combined. Median urine output and glomerular filtration rate were 0.46 mL/kg/h and 1.84 mL/kg/min. Dogs retained a large amount of fluids during anesthesia, as indicated by increased body weight, positive fluid balance, increased total body water volume, and increased extracellular fluid volume. The PCV, total protein concentration, and esophageal temperature decreased in a linear manner. CONCLUSIONS AND CLINICAL RELEVANCE: Dogs anesthetized for a tibial plateau leveling osteotomy retained a large amount of fluids, had low urinary output, and had decreased PCV, total protein concentration, and esophageal temperature. Evaluation of urine output alone in anesthetized dogs may not be an adequate indicator of fluid balance.