969 resultados para Tina Passman


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seamounts are of great interest to science, industry and conservation because of their potential role as 'stirring rods' of the oceans, their enhanced productivity, their high local biodiversity, and the growing exploitation of their natural resources. This is accompanied by rising concern about the threats to seamount ecosystems, e.g. through over-fishing and the impact of trawling. OASIS described the functioning characteristics of seamount ecosystems. OASIS' integrated hydrographic, biogeochemical and biological information. Based on two case studies. The scientific results, condensed in conceptual and mass balanced ecosystem models, were applied to outline a model management plan as well as site-specific management plans for the seamounts investigated. OASIS addressed five main objectives: Objective 1: To identify and describe the physical forcing mechanisms effecting seamount systems Objective 2: To assess the origin, quality and dynamics of particulate organic material within the water column and surface sediment at seamounts. Objective 3: To describe aspects of the biodiversity and the ecology of seamount biota, to assess their dynamics and the maintenance of their production. Objective 4: Modelling the trophic ecology of seamount ecosystems. Objective 5: Application of scientific knowledge to practical conservation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Well-preserved Mesozoic radiolarian faunas have been recovered at four sites of Deep Sea Drilling Project Leg 62. Late Early Cretaceous assemblages, which occur always with foraminifers or calcareous nannoplankton, allow the description of 21 new species, the introduction of a new zone scheme, and calibration of the radiolarian zones with the geochronological scale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As a response to ocean warming, shifts in fish species distribution and changes in production have been reported that have been partly attributed to temperature effects on the physiology of animals. The Southern Ocean hosts some of the most rapidly warming regions on earth and Antarctic organisms are reported to be especially temperature sensitive. While cellular and molecular organismic levels appear, at least partially, to compensate for elevated temperatures, the consequences of acclimation to elevated temperature for the whole organism are often less clear. Growth and reproduction are the driving factors for population structure and abundance. The aim of this study was to assess the effect of long-term acclimation to elevated temperature on energy budget parameters in the high-Antarctic fish Trematomus bernacchii. Our results show a complete temperature compensation for routine metabolic costs after 9 weeks of acclimation to 4°C. However, an up to 84% reduction in mass growth was measured at 2 and 4°C compared with the control group at 0°C, which is best explained by reduced food assimilation rates at warmer temperatures. With regard to a predicted temperature increase of up to 1.4°C in the Ross Sea by 2200, such a significant reduction in growth is likely to affect population structures in nature, for example by delaying sexual maturity and reducing production, with severe impacts on Antarctic fish communities and ecosystems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Radiolarians form a remarkable part of the fossil plankton for Cretaceous sediments of the North Atlantic. Selected sites with long-term sedimentary successions of deep facies were studied (ODP Leg 103 and DSDP Site 398 off northwest Spain and DSDP Site 603 off the east coast of the United States). Preservation of the radiolarian faunas is generally poor, and the faunal abundance and diversity reflect the diagenetic history of the host sediment rather than the original faunal productivity. Several exceptions include abundant and some well-preserved radiolarian faunas from lower Campanian, Cenomanian/Turonian boundary, upper Albian, lower Albian, and Barremian sediments. These increases in radiolarian abundance and preservation coincide with well-established Cretaceous oceanic events in the North Atlantic. Typical faunal associations of these sections are described, and faunal associations from the Cenomanian/Turonian Boundary Event are documented for the first time in the North Atlantic. The relationship of the radiolarian blooms with coeval oceanic events in the North Atlantic is also discussed.