961 resultados para Threshold concept theory
Resumo:
The concept of explaining the use of an old tool like the Smith chart, using modern tools like MATLAB [1] scripts in combination with e-learning facilities, is exemplified by two MATLAB scripts. These display, step by step, the graphical procedure that must be used to solve the double-stub impedance-matching problem. These two scripts correspond to two different possible ways to analyze this matching problem, and they are important for students to learn by themselves.
Resumo:
We calculate the equilibrium thermodynamic properties, percolation threshold, and cluster distribution functions for a model of associating colloids, which consists of hard spherical particles having on their surfaces three short-ranged attractive sites (sticky spots) of two different types, A and B. The thermodynamic properties are calculated using Wertheim's perturbation theory of associating fluids. This also allows us to find the onset of self-assembly, which can be quantified by the maxima of the specific heat at constant volume. The percolation threshold is derived, under the no-loop assumption, for the correlated bond model: In all cases it is two percolated phases that become identical at a critical point, when one exists. Finally, the cluster size distributions are calculated by mapping the model onto an effective model, characterized by a-state-dependent-functionality (f) over bar and unique bonding probability (p) over bar. The mapping is based on the asymptotic limit of the cluster distributions functions of the generic model and the effective parameters are defined through the requirement that the equilibrium cluster distributions of the true and effective models have the same number-averaged and weight-averaged sizes at all densities and temperatures. We also study the model numerically in the case where BB interactions are missing. In this limit, AB bonds either provide branching between A-chains (Y-junctions) if epsilon(AB)/epsilon(AA) is small, or drive the formation of a hyperbranched polymer if epsilon(AB)/epsilon(AA) is large. We find that the theoretical predictions describe quite accurately the numerical data, especially in the region where Y-junctions are present. There is fairly good agreement between theoretical and numerical results both for the thermodynamic (number of bonds and phase coexistence) and the connectivity properties of the model (cluster size distributions and percolation locus).
Resumo:
We generalize the Flory-Stockmayer theory of percolation to a model of associating (patchy) colloids, which consists of hard spherical particles, having on their surfaces f short-ranged-attractive sites of m different types. These sites can form bonds between particles and thus promote self-assembly. It is shown that the percolation threshold is given in terms of the eigenvalues of a m x m matrix, which describes the recursive relations for the number of bonded particles on the ith level of a cluster with no loops; percolation occurs when the largest of these eigenvalues equals unity. Expressions for the probability that a particle is not bonded to the giant cluster, for the average cluster size and the average size of a cluster to which a randomly chosen particle belongs, are also derived. Explicit results for these quantities are computed for the case f = 3 and m = 2. We show how these structural properties are related to the thermodynamics of the associating system by regarding bond formation as a (equilibrium) chemical reaction. This solution of the percolation problem, combined with Wertheim's thermodynamic first-order perturbation theory, allows the investigation of the interplay between phase behavior and cluster formation for general models of patchy colloids.
Resumo:
Since collaborative networked organisations are usually formed by independent and heterogeneous entities, it is natural that each member holds his own set of values, and that conflicts among partners might emerge because of some misalignment of values. In contrast, it is often stated in literature that the alignment between the value systems of members involved in collaborative processes is a prerequisite for successful co-working. As a result, the issue of core value alignment in collaborative networks started to attract attention. However, methods to analyse such alignment are lacking mainly because the concept of 'alignment' in this context is still ill defined and shows a multifaceted nature. As a contribution to the area, this article introduces an approach based on causal models and graph theory for the analysis of core value alignment in collaborative networks. The potential application of the approach is then discussed in the virtual organisations' breeding environment context.
Resumo:
Although stock prices fluctuate, the variations are relatively small and are frequently assumed to be normal distributed on a large time scale. But sometimes these fluctuations can become determinant, especially when unforeseen large drops in asset prices are observed that could result in huge losses or even in market crashes. The evidence shows that these events happen far more often than would be expected under the generalized assumption of normal distributed financial returns. Thus it is crucial to properly model the distribution tails so as to be able to predict the frequency and magnitude of extreme stock price returns. In this paper we follow the approach suggested by McNeil and Frey (2000) and combine the GARCH-type models with the Extreme Value Theory (EVT) to estimate the tails of three financial index returns DJI,FTSE 100 and NIKKEI 225 representing three important financial areas in the world. Our results indicate that EVT-based conditional quantile estimates are much more accurate than those from conventional AR-GARCH models assuming normal or Student’s t-distribution innovations when doing out-of-sample estimation (within the insample estimation, this is so for the right tail of the distribution of returns).
Resumo:
Most financial and economic time-series display a strong volatility around their trends. The difficulty in explaining this volatility has led economists to interpret it as exogenous, i.e., as the result of forces that lie outside the scope of the assumed economic relations. Consequently, it becomes hard or impossible to formulate short-run forecasts on asset prices or on values of macroeconomic variables. However, many random looking economic and financial series may, in fact, be subject to deterministic irregular behavior, which can be measured and modelled. We address the notion of endogenous volatility and exemplify the concept with a simple business-cycles model.
Resumo:
We study a model consisting of particles with dissimilar bonding sites ("patches"), which exhibits self-assembly into chains connected by Y-junctions, and investigate its phase behaviour by both simulations and theory. We show that, as the energy cost epsilon(j) of forming Y-junctions increases, the extent of the liquid-vapour coexistence region at lower temperatures and densities is reduced. The phase diagram thus acquires a characteristic "pinched" shape in which the liquid branch density decreases as the temperature is lowered. To our knowledge, this is the first model in which the predicted topological phase transition between a fluid composed of short chains and a fluid rich in Y-junctions is actually observed. Above a certain threshold for epsilon(j), condensation ceases to exist because the entropy gain of forming Y-junctions can no longer offset their energy cost. We also show that the properties of these phase diagrams can be understood in terms of a temperature-dependent effective valence of the patchy particles. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3605703]
Resumo:
In this paper is presented a Game Theory based methodology to allocate transmission costs, considering cooperation and competition between producers. As original contribution, it finds the degree of participation on the additional costs according to the demand behavior. A comparative study was carried out between the obtained results using Nucleolus balance and Shapley Value, with other techniques such as Averages Allocation method and the Generalized Generation Distribution Factors method (GGDF). As example, a six nodes network was used for the simulations. The results demonstrate the ability to find adequate solutions on open access environment to the networks.
Resumo:
Intensive use of Distributed Generation (DG) represents a change in the paradigm of power systems operation making small-scale energy generation and storage decision making relevant for the whole system. This paradigm led to the concept of smart grid for which an efficient management, both in technical and economic terms, should be assured. This paper presents a new approach to solve the economic dispatch in smart grids. The proposed methodology for resource management involves two stages. The first one considers fuzzy set theory to define the natural resources range forecast as well as the load forecast. The second stage uses heuristic optimization to determine the economic dispatch considering the generation forecast, storage management and demand response
Resumo:
We present a new dynamical approach to the Blumberg's equation, a family of unimodal maps. These maps are proportional to Beta(p, q) probability densities functions. Using the symmetry of the Beta(p, q) distribution and symbolic dynamics techniques, a new concept of mirror symmetry is defined for this family of maps. The kneading theory is used to analyze the effect of such symmetry in the presented models. The main result proves that two mirror symmetric unimodal maps have the same topological entropy. Different population dynamics regimes are identified, when the intrinsic growth rate is modified: extinctions, stabilities, bifurcations, chaos and Allee effect. To illustrate our results, we present a numerical analysis, where are demonstrated: monotonicity of the topological entropy with the variation of the intrinsic growth rate, existence of isentropic sets in the parameters space and mirror symmetry.
Resumo:
The phase diagram of a simple model with two patches of type A and ten patches of type B (2A10B) on the face centred cubic lattice has been calculated by simulations and theory. Assuming that there is no interaction between the B patches the behavior of the system can be described in terms of the ratio of the AB and AA interactions, r. Our results show that, similarly to what happens for related off-lattice and two-dimensional lattice models, the liquid-vapor phase equilibria exhibit reentrant behavior for some values of the interaction parameters. However, for the model studied here the liquid-vapor phase equilibria occur for values of r lower than 1/3, a threshold value which was previously thought to be universal for 2AnB models. In addition, the theory predicts that below r = 1/3 (and above a new condensation threshold which is < 1/3) the reentrant liquid-vapor equilibria are so extreme that it exhibits a closed loop with a lower critical point, a very unusual behavior in single-component systems. An order-disorder transition is also observed at higher densities than the liquid-vapor equilibria, which shows that the liquid-vapor reentrancy occurs in an equilibrium region of the phase diagram. These findings may have implications in the understanding of the condensation of dipolar hard spheres given the analogy between that system and the 2AnB models considered here. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4771591]
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
This paper aims to present a contrastive approach between three different ways of building concepts after proving the similar syntactic possibilities that coexist in terms. However, from the semantic point of view we can see that each language family has a different distribution in meaning. But the most important point we try to show is that the differences found in the psychological process when communicating concepts should guide the translator and the terminologist in the target text production and the terminology planning process. Differences between languages in the information transmission process are due to the different roles the different types of knowledge play. We distinguish here the analytic-descriptive knowledge and the analogical knowledge among others. We also state that none of them is the best when determining the correctness of a term, but there has to be adequacy criteria in the selection process. This concept building or term building success is important when looking at the linguistic map of the information society.