955 resultados para Thermal behavior study
Resumo:
An experimental and theoretical study of the ferroelectric and piezoelectric behavior of PZT doped with barium is presented. Ab initio perturbed ion calculations was carried out. The properties, such as remnant polarization, coercive field and the coupling factor of the PZT at constant sintering temperature was compared with the Zr4+/Ti4+ ions dislocation energy and the lattice interaction energy. An agreement between the experimental and theoretical results, with a decrease of the interaction energy and an inversion of the energy stability from tetragonal to rhombohedral phase was observed. (C) 1999 Kluwer Academic Publishers.
Resumo:
Tin dioxide nanoparticle suspensions were synthesized at room temperature by the hydrolysis reaction of tin chloride (II) dissolved in ethanol. The effect of the initial tin (II) ion concentration, in the ethanolic solution, on the mean particle size of the nanoparticles was studied. The Sn2+ concentration was varied from 0.0025 to 0.1 M, and all other synthesis parameters were kept fixed. Moreover, an investigation of the effect of agglomeration on the nanoparticle characteristics (i.e., size and morphology) was also done by modifying the pH of the SnO2 suspensions. The different samples were characterized by transmission electron microscopy, optical absorption spectroscopy in the ultraviolet range, and photoluminescence measurements. The results show that higher initial ion concentrations and agglomeration lead to larger nanoparticles. The concentration effect is explained by enhanced growth due to a higher supersaturation of the liquid medium. However, it was observed that the agglomeration of the nanoparticles in suspension induce coarsening by the oriented-attachment mechanism.
Resumo:
Oxamniquine polymeric prodrug with potential antischistosomal activity was prepared using dextran T-70 as a carrier, which was analysed by (HNMR)-H-1, C-13 NMR and IR spectroscopy. The formation of the oxamniquine salt was confirmed by thermogravimetric analysis (TG) and differential scanning calorimetry (DSC) which showed a different thermal behaviour when compared to the physical mixture.
Resumo:
Theoretical data using ab initio perturbed ion calculation were compared with ferroelectric and piezoelectric experimental data of strontium doped PZT. Various concentrations of SrO in PZT at constant temperature and sintering time were carried out. Experimental results, such as the remanent polarization, P-R of 6.9-8.9 muC/Cm-2, the coercive field, E-C of 6.6-7.8 kVcm, and the planar coupling factor, Kp of 0.45-0.53, were compared with the energy of Zr4+ and Ti4+ ion dislocation and the lattice interaction energy which show that strontium increment in PZT alter the energies and increase the values of piezoelectric and ferroelectric variables. Calculations of lattice energy of the rhombohedral phase show that a phase non-stability is coincident with increasing experimental values of the P-R, E-C and Kp. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Magnesium ion was reacted with 5,7-dibromo-, 5,7-dichloro-, 7-iodo- and 5-chloro-7-iodo-8-hydroxyquinoline, in acetone/ammonium hydroxide medium under constant stirring to obtain (I) Mg[(C9H4ONBr2)(2)].2H(2)O; (II) Mg[(C9H4ONCl2)(2)].3H(2)O; (III) Mg[(C9H5ONI)(2)].2H(2)O and (IV) Mg[(C9H4ONICl)(2)].2.5H(2)O complexes. The compounds were characterized by elemental analysis, IR spectra, ICP, TG-DTA and DSC.Through thermal decomposition residues were obtained and characterized, by X-ray diffractometry, as a mixture of hexagonal MgBr2 and cubic MgO to the (I) compound at 850degreesC; cubic MgO to the (II), (III) and (IV) compounds at 750, 800 and 700degreesC, respectively.
Resumo:
Thermogravimetry (TG), cyclic voltammetry (CV) and other analytical techniques were used to study the reactions of mercury with Pt-30% Ir alloy. The results allowed to suggest that an electrodeposited mercury film interacts with the substrate and when subjected to heat or electrochemical removal at least four mass loss steps or five peaks appeared during the mercury desorption process. The first two steps were attributed to Hg(0) removal probably from the bulk and from the adsorbed monolayer which wets the electrode surface. These two processes are responsible for peaks D and F in the cyclic voltammograms. The last two peaks (G, H) in CV were ascribed to the intermetallic compound decomposition. In TG curves, the last two steps were attributed to the PtHg4 (third step), and PtHg2 decomposition followed by Hg removal from the subsurface. The PtHg2 was formed by an eutectoide reaction: PtHg -> PtHg2+Hg(Pt-Ir). The Hg diffused to the subsurface was not detectable by cyclic voltammetry.
Resumo:
The work reported here consisted of a study of the sensitivity of the nonlinear electrical properties of dense SnO2. CoO ceramic systems to low concentrations of La2O3, sintering temperature and cooling rates. The nonlinear electrical properties of these systems were found to increase with decreasing cooling rates, a behavior attributed to the CoO solid state reactions at temperatures below 1000 degreesC. Post-annealing treatment in N-2-rich atmospheres strongly decreases the non-ohmic behavior of SnO2. CoO ceramic systems. However, this behavior may be restored through thermal treatment in an O-2-rich atmosphere. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Reactive zirconia powder was synthesized by the complexation of zirconium metal from zirconium hydroxide using a solution of 8-hydroxiquinoline. The kinetics of zirconia crystallization was followed by X-ray diffraction, scanning electron microscopy and surface area measured by the nitrogen adsorption/desorption technique. The results indicated that zirconia with a surface area as high as 100 m(2)/g can be obtained by this method after calcination at 500degreesC. Zirconia presents three polymorphic phases (monoclinic, tetragonal and cubic), which are reversibly interconversible. The cluster model Zr4O8 and Z(r)4O(7)(+2) was used for a theoretical study of the stabilization process. The ab initio RHF method was employed with the Gaussian94 program and the total energies and the energy gap of the different phases were calculated and compared with the experimental energy gap. The theoretical results show good reproducibility of the energy gap for zirconia. (C) 2004 Kluwer Academic Publishers.
Resumo:
We performed a comparative study of electrical and thermal properties of ZnO- and SnO2-based varistor. The electrical properties of commercial ZnO-based varistor are equivalent to that found in SnO2-based varistor system. In spite of this, the SnO2 showed a thermal conductivity higher than commercial samples of ZnO-based varistor, which allied with its simpler microstructure and lower dopant concentration is a remarkable result that point out to the use of this system to compete commercially with ZnO-based varistor devices.
Small-angle X-ray scattering study of the smart thermo-optical behavior of zirconyl aqueous colloids
Resumo:
The smart thermo-optical systems studied here are based on the unusual thermoreversible sol-gel transition of zirconyl chloride aqueous solution modified by sulfuric acid in the molar ratio Zr/SO4:3/1. The transparency to the visible light changes during heating due to light scattering. This feature is related to the aggregates growth that occurs during gelation. These reversible changes can be controlled by the amount of chloride ions in solution. The thermoreversible sol-gel transition temperature increases from 323 to 343 K by decreasing the molar ratio Cl/Zr from 7.0 to 1.3. In this work the effect of the concentration of chloride ions on the structural characteristics of the system has been analyzed by in situ SAXS measurements during the sol-gel transition carried out at 323 and 333 K. The experimental SAXS curves of sols exhibit three regions at small, medium and high scattering vectors characteristics of Guinier, fractal and Porod regimes, respectively. The radius of primary particles, obtained from the crossover between the fractal and Porod regimes, remains almost invariable with the chloride concentration, and the value (4 Angstrom) is consistent with the size of the molecular precursor. During the sol-gel transition the aggregates grow with a fractal structure and the fractal dimensionality decreases from 2.4 to 1.8. This last value is characteristic of a cluster-cluster aggregation controlled by a diffusion process. Furthermore, the time exponent of aggregate growth presents values of 0.33 and 1, typical of diffusional and hydrodynamic motions. A crossover between these two regimes is observed.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The synthesis, spectroscopic characterization, and thermal analysis of the compounds [Pd(X)(2)(mtu)(PPh3)] (X = Cl- (1), SCN- (2); mtu = N-methylthiourea; PPh3 = triphenylphosphine) and [Pd(X)(2)(phtu)(PPh3)] (X = Cl- (3), SCN- (4); phtu = N-phenylthiourea) are described. The thermal decomposition of the compounds occurs in two, three, or four stages and the final decomposition products were identified as Pd-0 by X-ray powder diffraction. The thermal stability order of the complexes is 4 > 3 > 2 > 1.
Resumo:
SrSnO3 was synthesized by the polymeric precursor method with elimination of carbon in oxygen atmosphere at 250 A degrees C for 24 h. The powder precursors were characterized by TG/DTA and high temperature X-ray diffraction (HTXRD). After calcination at 500, 600 and 700 A degrees C for 2 h, samples were evaluated by X-ray diffraction (XRD), infrared spectroscopy (IR) and Rietveld refinement of the XRD patterns for samples calcined at 900, 1,000 and 1,100 A degrees C. During thermal treatment of the powder precursor ester combustion was followed by carbonate decomposition and perovskite crystallization. No phase transition was observed as usually presented in literature for SrSnO3 that had only a rearrangement of SnO6 polyhedra.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)