610 resultados para Ternary
Resumo:
A thermal evaporation method developed in the research group enables to grow and design several morphologies of semiconducting oxide nanostructures, such as Ga_2O_3, GeO_2 or Sb_2O_3, among others, and some ternary oxide compounds (ZnGa_2O_4, Zn_2GeO_4). In order to tailor physical properties, a successful doping of these nanostructures is required. However, for nanostructured materials, doping may affect not only their physical properties, but also their morphology during the thermal growth process. In this paper, we will show some examples of how the addition of impurities may result into the formation of complex structures, or changes in the structural phase of the material. In particular, we will consider the addition of Sn and Cr impurities into the precursors used to grow Ga_2O_3, Zn_2GeO_4 and Sb_2O_3 nanowires, nanorods or complex nanostructures, such as crossing wires or hierarchical structures. Structural and optical properties were assessed by electron microscopy (SEM and TEM), confocal microscopy, spatially resolved cathodoluminescence (CL), photoluminescence, and Raman spectroscopies. The growth mechanisms, the luminescence bands and the optical confinement in the obtained oxide nanostructures will be discussed. In particular, some of these nanostructures have been found to be of interest as optical microcavities. These nanomaterials may have applications in optical sensing and energy devices.
Resumo:
Acknowledgments Support for this work came from the SAFARI consortium which was funded by Bayern Gas, ConocoPhillips, Dana Petroleum, Dong Energy, Eni Norge, GDF Suez, Idemitsu, Lundin, Noreco, OMV, Repsol, Rocksource, RWE, Statoil, Suncor, Total, PDO, VNG and the Norwegian Petroleum Directorate (NPD). This manuscript has benefited from discussion with Bruce Ainsworth, Rachel Nanson and Christian Haug Eide. Boyan Vakarelov and Richard Davis Jr. are thanked for their constructive reviews and valuable comments that helped to improve the manuscript.
Resumo:
Incumbent telecommunication lasers emitting at 1.5 µm are fabricated on InP substrates and consist of multiple strained quantum well layers of the ternary alloy InGaAs, with barriers of InGaAsP or InGaAlAs. These lasers have been seen to exhibit very strong temperature dependence of the threshold current. This strong temperature dependence leads to a situation where external cooling equipment is required to stabilise the optical output power of these lasers. This results in a significant increase in the energy bill associated with telecommunications, as well as a large increase in equipment budgets. If the exponential growth trend of end user bandwidth demand associated with the internet continues, these inefficient lasers could see the telecommunications industry become the dominant consumer of world energy. For this reason there is strong interest in developing new, much more efficient telecommunication lasers. One avenue being investigated is the development of quantum dot lasers on InP. The confinement experienced in these low dimensional structures leads to a strong perturbation of the density of states at the band edge, and has been predicted to result in reduced temperature dependence of the threshold current in these devices. The growth of these structures is difficult due to the large lattice mismatch between InP and InAs; however, recently quantum dots elongated in one dimension, known as quantum dashes, have been demonstrated. Chapter 4 of this thesis provides an experimental analysis of one of these quantum dash lasers emitting at 1.5 µm along with a numerical investigation of threshold dynamics present in this device. Another avenue being explored to increase the efficiency of telecommunications lasers is bandstructure engineering of GaAs-based materials to emit at 1.5 µm. The cause of the strong temperature sensitivity in InP-based quantum well structures has been shown to be CHSH Auger recombination. Calculations have shown and experiments have verified that the addition of bismuth to GaAs strongly reduces the bandgap and increases the spin orbit splitting energy of the alloy GaAs1−xBix. This leads to a bandstructure condition at x = 10 % where not only is 1.5 µm emission achieved on GaAs-based material, but also the bandstructure of the material can naturally suppress the costly CHSH Auger recombination which plagues InP-based quantum-well-based material. It has been predicted that telecommunications lasers based on this material system should operate in the absence of external cooling equipment and offer electrical and optical benefits over the incumbent lasers. Chapters 5, 6, and 7 provide a first analysis of several aspects of this material system relevant to the development of high bismuth content telecommunication lasers.
Resumo:
Electrostatic interaction is a strong force that attracts positively and negatively charged molecules to each other. Such an interaction is formed between positively charged polycationic polymers and negatively charged nucleic acids. In this dissertation, the electrostatic attraction between polycationic polymers and nucleic acids is exploited for applications in oral gene delivery and nucleic acid scavenging. An enhanced nanoparticle for oral gene delivery of a human Factor IX (hFIX) plasmid is developed using the polycationic polysaccharide, chitosan (Ch), in combination with protamine sulfate (PS) to treat hemophilia B. For nucleic acid scavenging purposes, the development of an effective nucleic acid scavenging nanofiber platform is described for dampening hyper-inflammation and reducing the formation of biofilms.
Non-viral gene therapy may be an attractive alternative to chronic protein replacement therapy. Orally administered non-viral gene vectors have been investigated for more than one decade with little progress made beyond the initial studies. Oral administration has many benefits over intravenous injection including patient compliance and overall cost; however, effective oral gene delivery systems remain elusive. To date, only chitosan carriers have demonstrated successful oral gene delivery due to chitosan’s stability via the oral route. In this study, we increase the transfection efficiency of the chitosan gene carrier by adding protamine sulfate to the nanoparticle formulation. The addition of protamine sulfate to the chitosan nanoparticles results in up to 42x higher in vitro transfection efficiency than chitosan nanoparticles without protamine sulfate. Therapeutic levels of hFIX protein are detected after oral delivery of Ch/PS/phFIX nanoparticles in 5/12 mice in vivo, ranging from 3 -132 ng/mL, as compared to levels below 4 ng/mL in 1/12 mice given Ch/phFIX nanoparticles. These results indicate the protamine sulfate enhances the transfection efficiency of chitosan and should be considered as an effective ternary component for applications in oral gene delivery.
Dying cells release nucleic acids (NA) and NA-complexes that activate the inflammatory pathways of immune cells. Sustained activation of these pathways contributes to chronic inflammation related to autoimmune diseases including systemic lupus erythematosus, rheumatoid arthritis, and inflammatory bowel disease. Studies have shown that certain soluble, cationic polymers can scavenge extracellular nucleic acids and inhibit RNA-and DNA-mediated activation of Toll-like receptors (TLRs) and inflammation. In this study, the cationic polymers are incorporated onto insoluble nanofibers, enabling local scavenging of negatively charged pro-inflammatory species such as damage-associated molecular pattern (DAMP) molecules in the extracellular space, reducing cytotoxicity related to unwanted internalization of soluble cationic polymers. In vitro data show that electrospun nanofibers grafted with cationic polymers, termed nucleic acid scavenging nanofibers (NASFs), can scavenge nucleic acid-based agonists of TLR 3 and TLR 9 directly from serum and prevent the production of NF-ĸB, an immune system activating transcription factor while also demonstrating low cytotoxicity. NASFs formed from poly (styrene-alt-maleic anhydride) conjugated with 1.8 kDa branched polyethylenimine (bPEI) resulted in randomly aligned fibers with diameters of 486±9 nm. NASFs effectively eliminate the immune stimulating response of NA based agonists CpG (TLR 9) and poly (I:C) (TLR 3) while not affecting the activation caused by the non-nucleic acid TLR agonist pam3CSK4. Results in a more biologically relevant context of doxorubicin-induced cell death in RAW cells demonstrates that NASFs block ~25-40% of NF-ĸβ response in Ramos-Blue cells treated with RAW extracellular debris, ie DAMPs, following doxorubicin treatment. Together, these data demonstrate that the formation of cationic NASFs by a simple, replicable, modular technique is effective and that such NASFs are capable of modulating localized inflammatory responses.
An understandable way to clinically apply the NASF is as a wound bandage. Chronic wounds are a serious clinical problem that is attributed to an extended period of inflammation as well as the presence of biofilms. An NASF bandage can potentially have two benefits in the treatment of chronic wounds by reducing the inflammation and preventing biofilm formation. NASF can prevent biofilm formation by reducing the NA present in the wound bed, therefore removing large components of what the bacteria use to develop their biofilm matrix, the extracellular polymeric substance, without which the biofilm cannot develop. The NASF described above is used to show the effect of the nucleic acid scavenging technology on in vitro and in vivo biofilm formation of P. aeruginosa, S. aureus, and S. epidermidis biofilms. The in vitro studies demonstrated that the NASFs were able to significantly reduce the biofilm formation in all three bacterial strains. In vivo studies of the NASF on mouse wounds infected with biofilm show that the NASF retain their functionality and are able to scavenge DNA, RNA, and protein from the wound bed. The NASF remove DNA that are maintaining the inflammatory state of the open wound and contributing to the extracellular polymeric substance (EPS), such as mtDNA, and also removing proteins that are required for bacteria/biofilm formation and maintenance such as chaperonin, ribosomal proteins, succinyl CoA-ligase, and polymerases. However, the NASF are not successful at decreasing the wound healing time because their repeated application and removal disrupts the wound bed and removes proteins required for wound healing such as fibronectin, vibronectin, keratin, and plasminogen. Further optimization of NASF treatment duration and potential combination treatments should be tested to reduce the unwanted side effects of increased wound healing time.
Resumo:
Owing to an increased risk of aging population and a higher incidence of coronary artery disease (CAD), there is a need for more reliable and safer treatments. Numerous varieties of durable polymer-coated drug eluting stents (DES) are available in the market in order to mitigate in-stent restenosis. However, there are certain issues regarding their usage such as delayed arterial healing, thrombosis, inflammation, toxic corrosion by-products, mechanical stability and degradation. As a result, significant amount of research has to be devoted to the improvement of biodegradable polymer-coated implant materials in an effort to enhance their bioactive response. In this investigation, magneto-electropolished (MEP) and a novel biodegradable polymer coated ternary Nitinol alloys, NiTiTa and NiTiCr were prepared to study their bio and hemocompatibility properties. The initial interaction of a biomaterial with its surroundings is dependent on its surface characteristics such as, composition, corrosion resistance, work of adhesion and morphology. In-vitro corrosion tests such as potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) studies were conducted to determine the coating stability and longevity. In-vitro hemocompatibility studies and HUVEC cell growth was performed to determine their thrombogenic and biocompatibility properties. Critical delamination load of the polymer coated Nitinol alloys was determined using Nano-scratch analysis. Sulforhodamine B (SRB) assays were performed to elucidate the effect of metal ions leached from Nitinol alloys on the viability of HUVEC cells. Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), contact angle meter and X-ray diffraction (XRD) were used to characterize the surface of the alloys. MEP treated and polymer coated (PC) Nitinol alloys displayed a corrosion resistant polymer coating as compared to uncoated alloys. MEP and PC has resulted in reduced Ni and Cr ion leaching from NiTi5Cr and subsequently low cytotoxicity. Thrombogenicity tests revealed significantly less platelet adhesion and confluent endothelial cell growth on polymer coated and uncoated ternary MEP Nitinol alloys. Finally, this research addresses the bio and hemocompatibility of MEP + PC ternary Nitinol alloys that could be used to manufacture blood contacting devices such as stents and vascular implants which can lead to lower U.S. healthcare spending.
Resumo:
The compositions of natural glasses and phenocrysts in basalts from Deep Sea Drilling Project Sites 501, 504, and 505, near the Costa Rica Rift, constitute evidence for the existence of a periodically replenished axial magma chamber that repeatedly erupted lavas of remarkably uniform composition. Magma compositions were affected by three general components: (1) injected magmas carrying (in decreasing order of abundance) Plagioclase, olivine, and chrome-spinel phenocrysts (spinel assemblage); (2) injected magmas carrying Plagioclase, clinopyroxene, and olivine phenocrysts, but no spinel (clinopyroxene assemblage); and (3) moderately evolved hybrids in the magma chamber itself. The compositions of the injected phenocrysts and minerals in glomerocrysts are as follows: Plagioclase - An85-94; olivine - Fo87-89; clinopyroxene - high Cr2O3 (0.7-1.1%), endiopside (Wo42En51Fs7), and aluminous chromian spinel (Cr/Cr + Al = 0.3). These minerals resemble those thought to occur in upper mantle sources (9 kbars and less) of ocean-ridge basalts and to crystallize in magmas near those sources. In the magma chamber, more sodic Plagioclase (An79-85), less magnesian olivine (Fo81-86) and low-Cr2O3 (0.1-0.4%) clinopyroxene formed rims on these crystals, grew as other phenocrysts, and formed cumulus segregations on the walls and floors of the magma chamber. In the spinel-assemblage magmas, magnesiochromite (Cr/Cr + Al = 0.4-0.5) also formed. Some cumulus segregations were later entrained in lavas as xenoliths. The glass compositions define 16 internally homogeneous eruptive units, 13 of which are in stratigraphic order in a single hole, Hole 504B, which was drilled 561.5 meters into the ocean crust. These units are defined as differing from each other by more than analytical uncertainty in one or more oxides. However, many of the glass groups in Hole 504B show virtually no differences in TiO2 contents, Mg/Mg + Fe2+, or normative An/An + Ab, all of which are sensitive indicators of crystallization differentiation. The differences are so small that they are only apparent in the glass compositions; they are almost completely obscured in whole-rock samples by the presence of phenocrysts and the effects of alteration. Moreover, several of the glass units at different depths in Hole 504B are compositionally identical, with all oxides falling within the range of analytical uncertainty, with only small variations in the rest of the suite. The repetition of identical chemical types requires (1) very regular injection of magmas into the magma chamber, (2) extreme similarity of injected magmas, and (3) displacement of very nearly the same proportion of the magmas in the chamber at each injection. Numerical modeling and thermal considerations have led some workers to propose the existence of such conditions at certain types of spreading centers, but the lava and glass compositions at Hole 504B represent the first direct evidence revealed by drilling of the existence of a compositionally nearly steady-state magma chamber, and this chapter examines the processes acting in it in some detail. The glass groups that are most similar are from clinopyroxene-assemblage lavas, which have a range of Mg/Mg + Fe2"1" of 0.59 to 0.65. Spinel-assemblage basalts are less evolved, with Mg/Mg + Fe2+ of 0.65 to 0.69, but both types have nearly identical normative An/An + Ab (0.65-0.66). However, the two lava types contain megacrysts (olivine, Plagioclase, clinopyroxene) that crystallized from melts with Mg/Mg + Fe2+ values of 0.70 to 0.72. Projection of glass compositions into ternary normative systems suggests that spinel-assemblage magmas originated deeper in the mantle than clinopyroxene-assemblage magmas, and mineral data indicate that the two types followed different fractionation paths before reaching the magma chamber. The two magma types therefore represent neither a low- nor a high-pressure fractionation sequence. Some of the spinel-assemblage magmas may have had picritic parents, but were coprecipitating all of the spinel-assemblage phenocrysts before reaching the magma chamber. Clinopyroxene-assemblage magmas did not have picritic parents, but the compositions of phenocrysts suggest that they originated at about 9 kbars, near the transition between plagioclase peridotite and spinel peridotite in the mantle. Two glass groups have higher contents of alkalis, TiO2, and P2O5 than the others, evidently as a result of the compositions of mantle sources. Eruption of these lavas implies that conduits and chambers containing magmas from dissimilar sources were not completely interconnected on the Costa Rica Rift. The data are used to draw comparisons with the East Pacific Rise and to consider the mechanisms that may have prevented the eruption of ferrobasalts at these sites.
Resumo:
Most liquid electrolytes used in commercial lithium-ion batteries are composed by alkylcarbonate mixture containing lithium salt. The decomposition of these solvents by oxidation or reduction during cycling of the cell, induce generation of gases (CO2, CH4, C2H4, CO …) increasing of pressure in the sealed cell, which causes a safety problem [1]. The prior understanding of parameters, such as structure and nature of salt, temperature pressure, concentration, salting effects and solvation parameters, which influence gas solubility and vapor pressure of electrolytes is required to formulate safer and suitable electrolytes especially at high temperature.
We present in this work the CO2, CH4, C2H4, CO solubility in different pure alkyl-carbonate solvents (PC, DMC, EMC, DEC) and their binary or ternary mixtures as well as the effect of temperature and lithium salt LiX (X = LiPF6, LiTFSI or LiFAP) structure and concentration on these properties. Furthermore, in order to understand parameters that influence the choice of the structure of the solvents and their ability to dissolve gas through the addition of a salt, we firstly analyzed experimentally the transport properties (Self diffusion coefficient (D), fluidity (h-1), and conductivity (s) and lithium transport number (tLi) using the Stock-Einstein, and extended Jones-Dole equations [2]. Furthermore, measured data for the of CO2, C2H4, CH4 and CO solubility in pure alkylcarbonates and their mixtures containing LiPF6; LiFAP; LiTFSI salt, are reported as a function of temperature and concentration in salt. Based on experimental solubility data, the Henry’s law constant of gases in these solvents and electrolytes was then deduced and compared with values predicted by using COSMO-RS methodology within COSMOthermX software. From these results, the molar thermodynamic functions of dissolution such as the standard Gibbs energy, the enthalpy, and the entropy, as well as the mixing enthalpy of the solvents and electrolytes with the gases in its hypothetical liquid state were calculated and discussed [3]. Finally, the analysis of the CO2 solubility variations with the salt addition was then evaluated by determining specific ion parameters Hi by using the Setchenov coefficients in solution. This study showed that the gas solubility is entropy driven and can been influenced by the shape, charge density, and size of the anions in lithium salt.
References
[1] S.A. Freunberger, Y. Chen, Z. Peng, J.M. Griffin, L.J. Hardwick, F. Bardé, P. Novák, P.G. Bruce, Journal of the American Chemical Society 133 (2011) 8040-8047.
[2] P. Porion, Y.R. Dougassa, C. Tessier, L. El Ouatani, J. Jacquemin, M. Anouti, Electrochimica Acta 114 (2013) 95-104.
[3] Y.R. Dougassa, C. Tessier, L. El Ouatani, M. Anouti, J. Jacquemin, The Journal of Chemical Thermodynamics 61 (2013) 32-44.
Resumo:
The objective of this study was to determine if a high Tg polymer (Eudragit® S100) could be used to stabilize amorphous domains of polyethylene oxide (PEO) and hence improve the stability of binary polymer systems containing celecoxib (CX). We propose a novel method of stabilizing the amorphous PEO solid dispersion through inclusion of a miscible, high Tg polymer, namely, that can form strong inter-polymer interactions. The effects of inter-polymer interactions and miscibility between PEO and Eudragit S100 are considered. Polymer blends were first manufactured via hot-melt extrusion at different PEO/S100 ratios (70/30, 50/50, and 30/70 wt/wt). Differential scanning calorimetry and dynamic mechanical thermal analysis data suggested a good miscibility between PEO and S100 polymer blends, particularly at the 50/50 ratio. To further evaluate the system, CX/PEO/S100 ternary mixtures were extruded. Immediately after hot-melt extrusion, a single Tg that increased with increasing S100 content (anti-plasticization) was observed in all ternary systems. The absence of powder X-ray diffractometry crystalline Bragg’s peaks also suggested amorphization of CX. Upon storage (40°C/75% relative humidity), the formulation containing PEO/S100 at a ratio of 50:50 was shown to be most stable. Fourier transform infrared studies confirmed the presence of hydrogen bonding between Eudragit S100 and PEO suggesting this was the principle reason for stabilization of the amorphous CX/PEO solid dispersion system.
Resumo:
When organic esters or alcohols were dissolved in each of three novel ionic liquids (which have no effective vapour pressure), the vapour–liquid equilibria (as measured by infrared spectroscopy of the gas phase) revealed significant positive deviation from Raoult’s law for a wide range of perfume raw materials. The addition of water amplified the repulsive effect of the ionic liquid matrix, and this was exemplified by a series of ternary phase diagrams
Resumo:
A Fourier transform infrared gas-phase method is described herein and capable of deriving the vapour pressure of each pure component of a poorly volatile mixture and determining the relative vapour phase composition for each system. The performance of the present method has been validated using two standards (naphthalene and ferrocene), and a Raoult’s plot surface of a ternary system is reported as proof-of-principle. This technique is ideal for studying solutions comprising two, three, or more organic compounds dissolved in ionic liquids as they have no measurable vapour pressures.
Resumo:
Owing to their capability of merging the properties of metals and conventional polymers, Conducting Polymers (CPs) are a unique class of carbon-based materials capable of conducting electrical current. A conjugated backbone is the hallmark of CPs, which can readily undergo reversible doping to different extents, thus achieving a wide range of electrical conductivities, while maintaining mechanical flexibility, transparency and high thermal stability. Thanks to these inherent versatility and attracting properties, from their discovery CPs have experienced incessant widespread in a great plethora of research fields, ranging from energy storage to healthcare, also encouraging the spring and growth of new scientific areas with highly innovative content. Nowadays, Bioelectronics stands out as one of the most promising research fields, dealing with the mutual interplay between biology and electronics. Among CPs, the polyelectrolyte complex poly (3,4-ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT:PSS), especially in the form of thin films, has been emphasized as ideal platform for bioelectronic applications. Indeed, in the last two decades PEDOT:PSS has played a key role in the sensing of bioanalytes and living cells interfacing and monitoring. In the present work, development and characterization of two kinds of PEDOT:PSS-based devices for applications in Bioelectronics are discussed in detail. In particular, a low-cost amperometric sensor for the selective detection of Dopamine in a ternary mixture was optimized, taking advantage of the electrocatalytic and antifouling properties that render PEDOT:PSS thin films appealing tools for electrochemical sensing of bioanalytes. Moreover, the potentialities of this material to interact with live cells were explored through the fabrication of a microfluidic trapping device for electrical monitoring of 3D spheroids using an impedance-based approach.
Resumo:
Abstract : Wastepaper sludge ash (WSA) is generated by a cogeneration station by burning wastepaper sludge. It mainly consists of amorphous aluminosilicate phase, anhydrite, gehlenite, calcite, lime, C2S, C3A, quartz, anorthite, traces of mayenite. Because of its free lime content (~10%), WSA suspension has a high pH (13). Previous researchers have found that the WSA composition has poor robustness and the variations lead to some unsoundness for Portland cement (PC) blended WSA concrete. This thesis focused on the use of WSA in different types of concrete mixes to avoid the deleterious effect of the expansion due to the WSA hydration. As a result, WSA were used in making alkali-activated materials (AAMs) as a precursor source and as a potential activator in consideration of its amorphous content and the high alkaline nature. Moreover, the autogenous shrinkage behavior of PC concrete at low w/b ratio was used in order to compensate the expansion effect due to WSA. The concrete properties as well as the volume change were investigated for the modified WSA blended concrete. The reaction mechanism and microstructure of newly formed binder were evaluated by X-ray diffraction (XRD), calorimetry, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). When WSA was used as precursor, the results showed incompatible reaction between WSA and alkaline solution. The mixtures were not workable and provided very low compressive strength no matter what kinds of chemical activators were used. This was due to the metallic aluminum in WSA, which releases abundant hydrogen gas when WSA reacts with strong alkaline solution. Besides, the results of this thesis showed that WSA can activate the glassy phase contained in slag, glass powder (GP) and class F fly ash (FFA) with an optimum blended ratio of 50:50. The WSA/slag (mass ratio of 50:50) mortar (w/b of 0.47) attained 46 MPa at 28 days without heat curing assistance. A significant fast setting was noticed for the WSA-activated binder due to the C3A phase, free lime and metallic aluminum contained in the WSA. Adding 5% of gypsum can delay the fast setting, but this greatly increased the potential risk of intern sulfate attack. The XRD, TGA and calorimetry analyses demonstrated the formation of ettringite, C-S-H, portlandite, hydrogarnet and calcium carboaluminate in the hydrated binder. The mechanical performance of different binder was closely related to the microstructure of corresponding binder which was proved by the SEM observation. The hydrated WSA/slag and WSA/FFA binder formed a C-A-S-H type of gel with lower Ca/Si ratio (0.47~1.6). A hybrid gel (i.e. C-N-A-S-H) was observed for the WSA/GP binder with a very low Ca/Si ratio (0.26) and Na/Si ratio (0.03). The SEM/EDX analyses displayed the formation of expansive gel (ettringite and thaumasite) in the gypsum added WSA/slag concrete. The gradual emission of hydrogen gas due to the reaction of WSA with alkaline environment significantly increased the porosity and degraded the microstructure of hydrated matrix after the setting. In the last phase of this research WSA-PC blended binder was tailored to form a high autogenous shrinkage concrete in order to compensate the initial expansion. Different binders were proportioned with PC, WSA, silica fume or slag. The microstructure and mechanical properties of concrete can be improved by decreasing w/b ratios and by incorporating silica fume or slag. The 28-day compressive strength of WSA-blended concrete was above 22 MPa and reached 45 MPa when silica fume was added. The PC concrete incorporating silica fume or slag tended to develop higher autogenous shrinkage at low w/b ratios, and thus the ternary binder with the addition of WSA inhibited the long term shrinkage due to the initial expansion property to WSA. In the restrained shrinkage test, the concrete ring incorporating the ternary binder (PC/WSA/slag) revealed negligible potential to cracking up to 96 days as a result of the offset effect by WSA expansion. The WSA blended regular concrete could be produced for potential applications with reduced expansion, good mechanical property and lower permeability.
Resumo:
Light is the main information about the interstellar medium accessible on Earth. Based on this information one can conclude on the composition of the region where the light originates from, as well as on its history. The requirement for this is that it is possible to identify the different absorption and emission features in the spectrum and assign them to certain molecules, atoms or ions. To enable the identification of the different species, precise spectroscopic investigations of the species in the laboratory are necessary. In this work a new spectroscopic method is presented, which can be used to record pure rotational spectra of mass selected, cold, stored molecular ions. It is based on the idea of state specific attachment of helium atoms to the stored molecular ions. The new technique has been made possible through the development and recent completion of two new 22-pole ion trap instruments in the work group of Laboratory Astrophysics at the University of Cologne. These new instruments have the advantage to reach temperatures as low as 4K compared to the 10K of the predecessor instrument. These low temperatures enable the ternary attachment of helium atoms to the stored molecular ions and by this make it possible to develop this new method for pure rotational spectroscopy. According to this, this work is divided into two parts. The first part deals with the new FELion experiment that was build and characterized in the first part of the thesis. FELion is a cryogenic 22-pole ion trap apparatus, allowing to generate, mass select, store and cool down, and analyze molecular ions. The different components of the instrument, e.g. the Storage Ion Source for generating the ions or the first quadrupole mass filter, are described and characterized in this part. Besides this also the newly developed control and data acquisitions system is introduced. With this instrument the measurements presented in the second part of the work were performed. The second part deals with the new action spectroscopic method of state-selective helium attachment to the stored molecular ions. For a deeper analysis of the new technique the systems of CD+ and helium and HCO+ and helium are investigated in detail. Analytical and numerical models of the process are presented and compared to experimental results. The results of these investigations point to a seemingly very general applicability of the new method to a wide class of molecular ions. In the final part of the thesis measurements of the rotational spectrum of l-C3H+ are presented. These measurements have to be high-lighted, since it was possible for the first time in the laboratory to unambiguously measure four low-lying rotational transitions of l-C3H+. These measurements (Brünken et al. ApJL 783, L4 (2014)) enabled the reliable identification of so far unidentified emision lines observed in several regions of the interstellar medium (Pety et al. Astron. Astrophys. 548, A68 (2012), McGuire et al. The Astrophysical Journal 774, 56 (2013) and McGuire et al. The Astrophysical Journal 783, 36 (2014)).
Quantificação de açúcares com uma língua eletrónica: calibração multivariada com seleção de sensores
Resumo:
Este trabalho incide na análise dos açúcares majoritários nos alimentos (glucose, frutose e sacarose) com uma língua eletrónica potenciométrica através de calibração multivariada com seleção de sensores. A análise destes compostos permite contribuir para a avaliação do impacto dos açúcares na saúde e seu efeito fisiológico, além de permitir relacionar atributos sensoriais e atuar no controlo de qualidade e autenticidade dos alimentos. Embora existam diversas metodologias analíticas usadas rotineiramente na identificação e quantificação dos açúcares nos alimentos, em geral, estes métodos apresentam diversas desvantagens, tais como lentidão das análises, consumo elevado de reagentes químicos e necessidade de pré-tratamentos destrutivos das amostras. Por isso se decidiu aplicar uma língua eletrónica potenciométrica, construída com sensores poliméricos selecionados considerando as sensibilidades aos açucares obtidas em trabalhos anteriores, na análise dos açúcares nos alimentos, visando estabelecer uma metodologia analítica e procedimentos matemáticos para quantificação destes compostos. Para este propósito foram realizadas análises em soluções padrão de misturas ternárias dos açúcares em diferentes níveis de concentração e em soluções de dissoluções de amostras de mel, que foram previamente analisadas em HPLC para se determinar as concentrações de referência dos açúcares. Foi então feita uma análise exploratória dos dados visando-se remover sensores ou observações discordantes através da realização de uma análise de componentes principais. Em seguida, foram construídos modelos de regressão linear múltipla com seleção de variáveis usando o algoritmo stepwise e foi verificado que embora fosse possível estabelecer uma boa relação entre as respostas dos sensores e as concentrações dos açúcares, os modelos não apresentavam desempenho de previsão satisfatório em dados de grupo de teste. Dessa forma, visando contornar este problema, novas abordagens foram testadas através da construção e otimização dos parâmetros de um algoritmo genético para seleção de variáveis que pudesse ser aplicado às diversas ferramentas de regressão, entre elas a regressão pelo método dos mínimos quadrados parciais. Foram obtidos bons resultados de previsão para os modelos obtidos com o método dos mínimos quadrados parciais aliado ao algoritmo genético, tanto para as soluções padrão quanto para as soluções de mel, com R²ajustado acima de 0,99 e RMSE inferior a 0,5 obtidos da relação linear entre os valores previstos e experimentais usando dados dos grupos de teste. O sistema de multi-sensores construído se mostrou uma ferramenta adequada para a análise dos iii açúcares, quando presentes em concentrações maioritárias, e alternativa a métodos instrumentais de referência, como o HPLC, por reduzir o tempo da análise e o valor monetário da análise, bem como, ter um preparo mínimo das amostras e eliminar produtos finais poluentes.