900 resultados para Temperatura efectiva
Resumo:
La respiración del suelo es uno de los mayores flujos en el ciclo global de carbono y supone unas 80-98 Pg C año-1, por lo que cambios en las condiciones de los suelos pueden tener grandes efectos en las emisiones globales de carbono a la atmósfera. Esto hace que sea importante conocer y entender los mecanismos que influyen en la respiración de los suelos. La temperatura del suelo se ha reconocido como uno de los factores principales que influyen en la respiración del suelo aunque la humedad del suelo no es menos importante, sobre todo en climas como el mediterráneo donde es uno de los factores ecológicos más importantes. El objetivo del trabajo es determinar la relación que tienen la temperatura y la humedad del suelo con la respiración del mismo, y valorar si la gestión forestal influye en dicha relación.
Resumo:
Los yacimientos de El Perro y La Fragua se sitúan en el Monte Buciero (Santoña), separados únicamente por apenas 600 metros, en una zona que presenta un microclima particular que provoca el desarrollo de una vegetación con variedad de especies mediterráneas relictas y otras de carácter más atlántico. Ambos presentan niveles del Magdaleniense, Aziliense y Mesolítico que han sido datados empleando el método del carbono-14. En todos los niveles se encuentran abundantes restos de moluscos, incluyendo representantes del género Patella, que se analizaron mediante el método de racemización de aminoácidos. Las edades obtenidas con este método son superiores a las de radiocarbono y a la atribución cultural de los materiales.
Resumo:
Se analiza el efecto de la temperatura del termotratamiento sobre la conductividad eléctrica de la madera de pino radiata. Sobre probetas de madera de pino radiata de procedencia País Vasco (España), termotratada a 190ºC y 210ºC por el método Thermowood así como sobre piezas testigo de la misma especie, procedencia y dimensiones, acondicionadas todas ellas hasta masa constante a 20ºC/40%HR, 20ºC/65%HR y 20ºC/90%HR se evaluó la resistencia eléctrica (longitudinal y transversal) y, posteriormente, se ajustó el modelo Samuelson para modelizar en cada tipo de material la relación humedad de la madera-resistencia eléctrica. Se concluye que la temperatura empleada en el tratamiento térmico de la madera afecta no sólo a la humedad de equilibrio sino, también, a su conductividad eléctrica, siendo máximo este efecto en el tratamiento efectuado a 210ºC.
Resumo:
Esta tesis pretende contribuir al fomento y utilización de la energía solar como alternativa para la producción de agua caliente en el sector agroindustrial. La demanda de agua caliente es un aspecto clave en un gran número de agroindustrias y explotaciones agrarias. Esta demanda presenta una gran variabilidad, tanto en los horarios en que se solicita como en la temperatura del agua del depósito requerida (TADr), difiriendo del perfil de demanda habitual para uso doméstico. Existe una necesidad de profundizar en la influencia que tiene la variación de la TADr en la eficiencia y viabilidad de estos sistemas. El objetivo principal de esta tesis es caracterizar el funcionamiento de un sistema solar térmico (SST) con captador de tubos de vacío (CTV) para producir agua a temperaturas superiores a las habituales en estos sistemas. Se pretende determinar la influencia que la TADr tiene sobre la eficiencia energética del sistema, cuantificar el volumen de agua caliente que es capaz de suministrar en función de la TADr y determinar la rentabilidad del SST como sistema complementario de suministro. Para ello, se ha diseñado, instalado y puesto a punto un sistema experimental de calentamiento de agua, monitorizando su funcionamiento a diferentes TADr bajo condiciones ambientales reales. Los resultados cuantifican cómo el aumento de la TADr provoca una disminución de la energía suministrada al depósito, pudiendo superar diferencias de 1000 Wh m-2 d-1 entre 40 ºC y 80 ºC, para valores de irradiación solar próximos a 8000 Wh m-2 d-1 (la eficiencia del sistema oscila entre 73% y 56%). Esta reducción es consecuencia de la disminución de la eficiencia del captador y del aumento de las pérdidas de calor en las tuberías del circuito. En cuanto al agua suministrada, cuanto mayor es la TADr, mayor es la irradiación solar requerida para que tenga lugar la primera descarga de agua, aumentando el tiempo entre descargas y disminuyendo el número de éstas a lo largo del día. A medida que se incrementa la TADr, se produce una reducción del volumen de agua suministrado a la TADr, por factores como la pérdida de eficiencia del captador, las pérdidas en las tuberías, la energía acumulada en el agua que no alcanza la TADr y la mayor energía extraída del sistema en el agua producida. Para una TADr de 80 ºC, una parte importante de la energía permanece acumulada en el depósito sin alcanzar la TADr al final del día. Para aprovechar esta energía sería necesario disponer de un sistema complementario de suministro, ya que las pérdidas de calor nocturnas en el depósito pueden reducir considerablemente la energía útil disponible al día siguiente. La utilización del sistema solar como sistema único de suministro es inviable en la mayoría de los casos, especialmente a TADr elevadas, al no ajustarse la demanda de agua caliente a la estacionalidad de la producción del sistema solar, y al existir muchos días sin producción de agua caliente por la ausencia de irradiación mínima. Por el contrario, la inversión del sistema solar como sistema complementario para suministrar parte de la demanda térmica de una instalación es altamente recomendable. La energía útil anual del sistema solar estimada oscila entre 1322 kWh m-2 y 1084 kWh m-2. La mayor rentabilidad se obtendría suponiendo la existencia de una caldera eléctrica, donde la inversión se recuperaría en pocos años -entre 5.7 años a 40 ºC y 7.2 años a 80 ºC -. La rentabilidad también es elevada suponiendo la existencia de una caldera de gasóleo, con periodos de recuperación inferiores a 10 años. En una industria ficticia con demanda de 100 kWh d-1 y caldera de gasóleo existente, la inversión en una instalación solar optimizada sería rentable a cualquier TADr, con valores de VAN cercanos a la inversión realizada -12000 € a 80 ºC y 15000€ a 40 ºC- y un plazo de recuperación de la inversión entre 8 y 10 años. Los resultados de este estudio pueden ser de gran utilidad a la hora de determinar la viabilidad de utilización de sistemas similares para suministrar la demanda de agua caliente de agroindustrias y explotaciones agropecuarias, o para otras aplicaciones en las que se demande agua a temperaturas distintas de la habitual en uso doméstico (60 ºC). En cada caso, los rendimientos y la rentabilidad vendrán determinados por la irradiación de la zona, la temperatura del agua requerida y la curva de demanda de los procesos específicos. ABSTRACT The aim of this thesis is to contribute to the development and use of solar energy as an alternative for producing hot water in the agribusiness sector. Hot water supply is a key issue for a great many agribusinesses and agricultural holdings. Both hot water demand times and required tank water temperature (rTWT) are highly variable, where the demand profile tends to differ from domestic use. Further research is needed on how differences in rTWT influence the performance and feasibility of these systems. The main objective of this thesis is to characterize the performance and test the feasibility of an evacuated tube collector (ETC) solar water heating (SWH) system providing water at a higher temperature than is usual for such systems. The aim is to determine what influence the rTWT has on the system’s energy efficiency, quantify the volume of hot water that the system is capable of supplying at the respective rTWT and establish whether SWH is feasible as a booster supply system for the different analysed rTWTs. To do this, a prototype water heating system has been designed, installed and commissioned and its performance monitored at different rTWTs under real operating conditions. The quantitative results show that a higher rTWT results in a lower energy supply to the tank, where the differences may be greater than 1000 Wh m-2 d-1 from 40 ºC to 80 ºC for insolation values of around 8000 Wh m-2 d-1 (system efficiency ranges from 73% to 56%). The drop in supply is due to lower collector efficiency and greater heat losses from the pipe system. As regards water supplied at the rTWT, the insolation required for the first withdrawal of water to take place is greater at higher rTWTs, where the time between withdrawals increases and the number of withdrawals decreases throughout the day. As rTWT increases, the volume of water supplied at the rTWT decreases due to factors such as lower collector efficiency, pipe system heat losses, energy stored in the water at below the rTWT and more energy being extracted from the system by water heating. For a rTWT of 80 ºC, much of the energy is stored in the tank at below the rTWT at the end of the day. A booster supply system would be required to take advantage of this energy, as overnight tank heat losses may significantly reduce the usable energy available on the following day. It is often not feasible to use the solar system as a single supply system, especially at high rTWTs, as, unlike the supply from the solar heating system which does not produce hot water on many days of the year because insolation is below the required minimum, hot water demand is not seasonal. On the other hand, investment in a solar system as a booster system to meet part of a plant’s heat energy demand is highly recommended. The solar system’s estimated annual usable energy ranges from 1322 kWh m-2 to 1084 kWh m-2. Cost efficiency would be greatest if there were an existing electric boiler, where the payback period would be just a few years —from 5.7 years at 40 ºC to 7.2 years at 80 ºC—. Cost efficiency is also high if there is an existing diesel boiler with payback periods of under 10 years. In a fictitious industry with a demand of 100 kWh day-1 and an existing diesel boiler, the investment in the solar plant would be highly recommended at any rTWT, with a net present value similar to investment costs —12000 € at 80 ºC and 15000 € at 40 ºC— and a payback period of 10 years. The results of this study are potentially very useful for determining the feasibility of using similar systems for meeting the hot water demand of agribusinesses and arable and livestock farms or for other applications demanding water at temperatures not typical of domestic demand (60ºC). Performance and cost efficiency will be determined by the regional insolation, the required water temperature and the demand curve of the specific processes in each case.
Resumo:
En esta investigación se ha estudiado el efecto de la variación de la temperatura en la deflexión de firmes flexibles. En primer lugar se han recopilado los criterios existentes de ajuste de la deflexión por efecto de la temperatura. Posteriormente, se ha llevado a cabo un estudio empírico mediante la auscultación de las deflexiones en cinco tramos de carretera con firme flexible y con diferentes espesores de mezclas bituminosas (entre 10 y 30 cm). Las medidas se han efectuado en dos campañas (verano e invierno), tratando de abarcar un amplio rango de temperaturas. En cada campaña, se han llevado a cabo distintas auscultaciones a diferentes temperaturas. Las medidas de cada campaña se han realizado el mismo día. Se han obtenido los coeficientes empíricos de ajuste por temperatura para cada tramo analizado. Además, se ha realizado un estudio teórico mediante la elaboración de diferentes modelos (multicapa elástico lineal, multicapa visco-elástico lineal y elementos finitos) que reproducen la respuesta estructural de los firmes flexibles auscultados. La caracterización mecánica de las mezclas bituminosas se ha realizado mediante ensayos de módulo complejo en laboratorio, a diferentes temperaturas y frecuencias, sobre testigos extraídos en las carreteras estudiadas. Se han calculado los coeficientes teóricos de ajuste por temperatura para cada modelo elaborado y tramo analizado. Finalmente, se ha realizado un estudio comparativo entre los distintos coeficientes de ajuste (existentes, empíricos y teóricos), que ha puesto de manifiesto que, en todos los casos analizados, los coeficientes obtenidos en el modelo de elementos finitos son los que más se aproximan a los coeficientes empíricos (valor de referencia para los tramos analizados). El modelo desarrollado de elementos finitos permite reproducir el comportamiento visco-elástico de las mezclas bituminosas y el carácter dinámico de las cargas aplicadas. Se han utilizado elementos tipo tetraedro isoparamétrico lineal (C3D8R) para el firme y la parte superior del cimiento, mientras que para la parte inferior se han empleado elementos infinitos (CIN3D8). In this research the effect produced by the temperature change on flexible pavements deflection is analysed. First, the existing criteria of deflection adjustment by temperature were collected. Additionally, an empirical analysis was carried out, consisting on deflection tests in five flexible-pavement road sections with different asphalt mix thickness (from 10 to 30 cm). The measures were taken in two seasons (summer and winter) in an effort to register a wide range of temperatures. Different surveys were carried out at different temperatures in each season. The tests of each season were done at the same day. The empirical temperature adjustment factors for every analysed section were obtained. A theoretical study was carried out by developing different models (linear elastic multilayer, linear visco-elastic multilayer and finite elements) that reproduce the structural response of the tested flexible pavements. The mechanical characterization of the asphalt mixes was achieved through laboratory complex-modulus tests at different temperatures and frequencies, using pavement cores from the surveyed roads. The theoretical temperature adjustment factors for each model developed and each section analysed were calculated. Finally, a comparative study among the different adjustment factors (existing, empirical and theoretical) was carried out. It has shown that, in all analysed cases, the factors obtained with the finite elements model are the closest to the empirical factors (reference value for the analysed sections). The finite elements model developed makes it possible to reproduce the visco-elastic behavior of the asphalt mixes and the dynamic nature of the applied loads. Linear isoparametric tetrahedral elements (C3D8R) have been used for the pavement and the subgrade, while infinite elements (CIN3D8) have been used for the foundations.
Resumo:
Durante la última década, se han llevado acabo numeroso estudios sobre la síntesis de materiales fotoluminiscentes sub-micrónicos, en gran medida, al amplio número de aplicaciones que demandan este tipo de materiales. En concreto dentro de los materiales fosforescentes o también denominados materiales con una prolongada persistencia de la luminiscencia, los estudios se han enfocado en la matriz de SrAl2O4 dopada con Europio (Eu2+) y Disprosio (Dy3+) dado que tiene mayor estabilidad y persistencia de la fosforescencia con respecto a otras matrices. Estos materiales se emplean mayoritariamente en pinturas luminiscentes, tintas, señalización de seguridad pública, cerámicas, relojes, textiles y juguetes fosforescentes. Dado al amplio campo de aplicación de los SrAl2O4:Eu, Dy, se han investigado múltiples rutas de síntesis como la ruta sol-gel, la síntesis hidrotermal, la síntesis por combustión, la síntesis láser y la síntesis en estado sólido con el fin de desarrollar un método eficiente y que sea fácilmente escalable. Sin embargo, en la actualidad el método que se emplea para el procesamiento a nivel industrial de los materiales basados en aluminato de estroncio es la síntesis por estado sólido, que requiere de temperaturas de entre 1300 a 1900oC y largos tiempos de procesamiento. Además el material obtenido tiene un tamaño de partícula de 20 a 100 μm; siendo este tamaño restrictivo para el empleo de este tipo de material en determinadas aplicaciones. Por tanto, el objetivo de este trabajo es el desarrollo de nuevas estrategias que solventen las actuales limitaciones. Dentro de este marco se plantean una serie de objetivos específicos: Estudio de los parámetros que gobiernan los procesos de reducción del tamaño de partícula mediante molienda y su relación en la respuesta fotoluminiscente. Estudio de la síntesis por combustión de SrAl2O4:Eu, Dy, evaluando el efecto de la temperatura y la cantidad de combustible (urea) en el proceso para la obtención de partículas cristalinas minimizando la presencia de fases secundarias. Desarrollo de nuevas rutas de síntesis de SrAl2O4:Eu, Dy empleando el método de sales fundidas. Determinación de los mecanismos de reacción en presencia de la sal fundida en función de los parámetros de proceso que comprende la relación de sales y reactivos, la naturaleza de la alúmina y su tamaño, la temperatura y atmósfera de tratamiento. Mejora de la eficiencia de los procesos de síntesis para obtener productos con propiedades finales óptimas en procesos factibles industrialmente para su transferencia tecnológica. Es este trabajo han sido evaluados los efectos de diferentes procesos de molienda para la reducción del tamaño de partícula del material de SrAl2O4:Eu, Dy comercial. En el proceso de molienda en medio húmedo por atrición se observa la alteración de la estructura cristalina del material debido a la reacción de hidrólisis generada incluso empleando como medio líquido etanol absoluto. Con el fin de solventar las desventajas de la molienda en medio húmedo se llevo a cabo un estudio de la molturación en seco del material. La molturación en seco de alta energía reduce significativamente el tamaño medio de partícula. Sin embargo, procesos de molienda superiores a una duración de 10 minutos ocasionan un aumento del estado de aglomeración de las partículas y disminuyen drásticamente la respuesta fotoluminiscente del material. Por tanto, se lleva a cabo un proceso de molienda en seco de baja energía. Mediante este método se consigue reducir el tamaño medio de partícula, d50=2.8 μm, y se mejora la homogeneidad de la distribución del tamaño de partícula evitando la amorfización del material. A partir de los resultados obtenidos mediante difracción de rayos X y microscopia electrónica de barrido se infiere que la disminución de la intensidad de la fotoluminiscencia después de la molienda en seco de alta energía con respecto al material inicial se debe principalmente a la reducción del tamaño de cristalito. Se observan menores variaciones en la intensidad de la fotoluminiscencia cuando se emplea un método de molienda de baja de energía ya que en estos procesos se preserva el dominio cristalino y se reduce la amorfización significativamente. Estos resultados corroboran que la intensidad de la fotoluminiscencia y la persistencia de la luminiscencia de los materiales de SrAl2O4:Eu2+, Dy3+ dependen extrínsecamente de la morfología de las partículas, del tamaño de partícula, el tamaño de grano, los defectos superficiales e intrínsecamente del tamaño de cristalito. Siendo las características intrínsecas las que dominan con respecto a las extrínsecas y por tanto tienen mayor relevancia en la respuesta fotoluminiscente. Mediante síntesis por combustión se obtuvieron láminas nanoestructuradas de SrAl2O4:Eu, Dy de ≤1 μm de espesor. La cantidad de combustible, urea, en la reacción influye significativamente en la formación de determinadas fases cristalinas. Para la síntesis del material de SrAl2O4:Eu, Dy es necesario incluir un contenido de urea mayor que el estequiométrico (siendo m=1 la relación estequiométrica). La incorporación de un exceso de urea (m>1) requiere de la presencia de un agente oxidante interno, HNO3, para que la reacción tenga lugar. El empleo de un mayor contenido de urea como combustible permite una quelación efectiva de los cationes en el sistema y la creación de las condiciones reductoras para obtener un material de mayor cristalinidad y con mejores propiedades fotoluminiscentes. El material de SrAl2O4:Eu, Dy sintetizado a una temperatura de ignición de 600oC tiene un tamaño medio 5-25 μm con un espesor de ≤1 μm. Mediante procesos de molturación en seco de baja energía es posible disminuir el tamaño medio de partícula ≈2 μm y homogenizar la distribución del tamaño de partícula pero hay un deterioro asociado de la respuesta luminiscente. Sin embargo, se puede mejorar la respuesta fotoluminiscente empleando un tratamiento térmico posterior a 900oC N2-H2 durante 1 hora que no supone un aumento del tamaño de partícula pero si permite aumentar el tamaño de cristalito y la reducción del Eu3+ a Eu2+. Con respecto a la respuesta fotoluminiscente, se obtiene valores de la intensidad de la fotoluminiscencia entre un 35%-21% con respecto a la intensidad de un material comercial de referencia. Además la intensidad inicial del decaimiento de la fosforescencia es un 20% de la intensidad del material de referencia. Por tanto, teniendo en cuenta estos resultados, es necesario explorar otros métodos de síntesis para la obtención de los materiales bajo estudio. Por esta razón, en este trabajo se desarrollo una ruta de síntesis novedosa para sintetizar SrAl2O4:Eu, Dy mediante el método de sales fundidas para la obtención de materiales de gran cristalinidad con tamaños de cristalito del orden nanométrico. Se empleo como sal fundente la mezcla eutéctica de NaCl y KCl, denominada (NaCl-KCl)e. La principal ventaja de la incorporación de la mezcla es el incremento la reactividad del sistema, reduciendo la temperatura de formación del SrAl2O4 y la duración del tratamiento térmico en comparación con la síntesis en estado sólido. La formación del SrAl2O4 es favorecida ya que se aumenta la difusión de los cationes de Sr2+ en el medio líquido. Se emplearon diferentes tipos de Al2O3 para evaluar el papel del tamaño de partícula y su naturaleza en la reacción asistida por sales fundidas y por tanto en la morfología y propiedades del producto final. Se obtuvieron partículas de morfología pseudo-esférica de tamaño ≤0.5 μm al emplear como alúmina precursora partículas sub-micrónicas ( 0.5 μm Al2O3, 0.1 μm Al2 O3 y γ-Al2O3). El mecanismo de reacción que tiene lugar se asocia a procesos de disolución-precipitación que dominan al emplear partículas de alúmina pequeñas y reactivas. Mientras al emplear una alúmina de 6 μm Al2O3 prevalecen los procesos de crecimiento cristalino siguiendo un patrón o plantilla debido a la menor reactividad del sistema. La nucleación y crecimiento de nanocristales de SrAl2O4:Eu, Dy se genera sobre la superficie de la alúmina que actúa como soporte. De esta forma se desarrolla una estructura del tipo coraza-núcleo («core-shell» en inglés) donde la superficie externa está formada por los cristales fosforescentes de SrAl2O4 y el núcleo está formado por alúmina. Las partículas obtenidas tienen una respuesta fotoluminiscente diferente en función de la morfología final obtenida. La optimización de la relación Al2O3/SrO del material de SrAl2O4:Eu, Dy sintetizado a partir de la alúmina de 6 μm permite reducir las fases secundarias y la concentración de dopantes manteniendo la respuesta fotoluminiscente. Comparativamente con un material comercial de SrAl2O4:Eu, Dy de referencia, se han alcanzado valores de la intensidad de la emisión de hasta el 90% y de la intensidad inicial de las curvas de decaimiento de la luminiscencia de un 60% para el material sintetizado por sales fundidas que tiene un tamaño medio ≤ 10μm. Por otra parte, es necesario tener en cuenta que el SrAl2O4 tiene dos polimorfos, la fase monoclínica que es estable a temperaturas inferiores a 650oC y la fase hexagonal, fase de alta temperatura, estable a temperaturas superiores de 650oC. Se ha determinado que fase monoclínica presenta propiedades luminiscentes, sin embargo existen discordancias a cerca de las propiedades luminiscentes de la fase hexagonal. Mediante la síntesis por sales fundidas es posible estabilizar la fase hexagonal empleando como alúmina precursora γ-Al2O3 y un exceso de Al2O3 (Al2O3/SrO:2). La estabilización de la fase hexagonal a temperatura ambiente se produce cuando el tamaño de los cristales de SrAl2O4 es ≤20 nm. Además se observó que la fase hexagonal presenta respuesta fotoluminiscente. El diseño de materiales de SrAl2O4:Eu,Dy nanoestructurados permite modular la morfología del material y por tanto la intensidad de la de la fotoluminiscencia y la persistencia de la luminiscencia. La disminución de los materiales precursores, la temperatura y el tiempo de tratamiento significa la reducción de los costes económicos del material. De ahí la viabilidad de los materiales de SrAl2O4:Eu,Dy obtenidos mediante los procesos de síntesis propuestos en esta memoria de tesis para su posterior escalado industrial. ABSTRACT The synthesis of sub-micron photoluminescent particles has been widely studied during the past decade because of the promising industrial applications of these materials. A large number of matrices has been developed, being SrAl2O4 host doped with europium (Eu2+) and dysprosium (Dy3+) the most extensively studied, because of its better stability and long-lasting luminescence. These functional inorganic materials have a wide field of application in persistent luminous paints, inks and ceramics. Large attention has been paid to the development of an efficient method of preparation of SrAl2O4 powders, including solgel method, hydrothermal synthesis, laser synthesis, combustion synthesis and solid state reaction. Many of these techniques are not compatible with large-scale production and with the principles of sustainability. Moreover, industrial processing of highly crystalline powders usually requires high synthesis temperatures, typically between 1300 a 1900oC, with long processing times, especially for solid state reaction. As a result, the average particle size is typically within the 20-100 μm range. This large particle size is limiting for current applications that demand sub-micron particles. Therefore, the objective of this work is to develop new approaches to overcome these limitations. Within this frame, it is necessary to undertake the following purposes: To study the parameters that govern the particle size reduction by milling and their relation with the photoluminescence properties. To obtain SrAl2O4:Eu, Dy by combustion synthesis, assessing the effect of the temperature and the amount of fuel (urea) to synthesize highly crystalline particles minimizing the presence of secondary phases. To develop new synthesis methods to obtain SrAl2O4:Eu, Dy powders. The molten salt synthesis has been proposed. As the method is a novel route, the reaction mechanism should be determine as a function of the salt mixture, the ratio of the salt, the kind of Al2O3 and their particle size and the temperature and the atmosphere of the thermal treatment. To improve the efficiency of the synthesis process to obtain SrAl2O4:Eu, Dy powders with optimal final properties and easily scalable. On the basis of decreasing the particle size by using commercial product SrAl2O4:Eu2+, Dy3+ as raw material, the effects of different milling methods have been evaluated. Wet milling can significantly alter the structure of the material through hydrolysis reaction even in ethanol media. For overcoming the drawbacks of wet milling, a dry milling-based processes are studied. High energy dry milling process allows a great reduction of the particle size, however milling times above 10 min produce agglomeration and accelerates the decrease of the photoluminescence feature. To solve these issues the low energy dry milling process proposed effectively reduces the particle size to d50=2.8 μm, and improves the homogeneity avoiding the amorphization in comparison with previous methods. The X-ray diffraction and scanning electron microscope characterization allow to infer that the large variations in PL (Photoluminescence) values by high energy milling process are a consequence mainly of the crystallite size reduction. The lesser variation in PL values by low energy milling proces is related to the coherent crystalline domain preservation and the unnoticeable amorphization. These results corroborate that the photoluminescence intensity and the persistent luminescence of the SrAl2O4:Eu2+, Dy3+ powders depend extrinsically on the morphology of the particles such as particle size, grain size, surface damage and intrinsically on the crystallinity (crystallite size); being the intrinsically effects the ones that have a significant influence on the photoluminescent response. By combustion method, nanostructured SrAl2O4:Eu2+, Dy3+ sheets with a thickness ≤1 μm have been obtained. The amount of fuel (urea) in the reaction has an important influence on the phase composition; urea contents larger than the stoichiometric one require the presence of an oxidant agent such as HNO3 to complete the reaction. A higher amount of urea (excess of urea: denoted m>1, being m=1 the stoichiometric composition) including an oxidizing agent produces SrAl2O4:Eu2+,Dy3+ particles with persistent luminescence due to the effective chelation of the cations and the creation of suitable atmospheric conditions to reduce the Eu3+ to Eu2+. Therefore, optimizing the synthesis parameters in combustion synthesis by using a higher amount of urea and an internal oxidizing agent allows to complete the reaction. The amount of secondary phases can be significantly reduced and the photoluminescence response can be enhanced. This situation is attributed to a higher energy that improves the crystallinity of the powders. The powders obtained have a particle size c.a. 5-25 μm with a thickness ≤1 μm and require relatively low ignition temperatures (600oC). It is possible to reduce the particle size by a low energy dry milling but this process implies the decrease of the photoluminescent response. However, a post-thermal treatment in a reducing atmosphere allows the improvement of the properties due to the increment of crystallinity and the reduction of Eu3+ to Eu2+. Compared with the powder resulted from solid state method (commercial reference: average particle size, 20 μm and heterogeneous particle size distribution) the emission intensity of the powder prepared by combustion method achieve the values between 35% to 21% of the reference powder intensity. Moreover, the initial intensity of the decay curve is 20% of the intensity of the reference powder. Taking in account these results, it is necessary to explore other methods to synthesize the powders For that reason, an original synthetic route has been developed in this study: the molten salt assisted process to obtain highly crystalline SrAl2O4 powders with nanometric sized crystallites. The molten salt was composed of a mixture of NaCl and KCl using a 0.5:0.5 molar ratio (eutectic mixture hereafter abbreviated as (NaCl-KCl)e). The main advantages of salt addition is the increase of the reaction rate, the significant reduction of the synthesis temperature and the duration of the thermal treatment in comparison with classic solid state method. The SrAl2O4 formation is promoted due to the high mobility of the Sr2+ cations in the liquid medium. Different kinds of Al2O3 have been employed to evaluate the role of the size and the nature of this precursor on the kinetics of reaction, on the morphology and the final properties of the product. The SrAl2O4:Eu2+, Dy3+ powders have pseudo-spherical morphology and particle size ≤0.5 μm when a sub-micron Al2O3 ( 0.5 μm Al2O3, 0.1 μm Al2O3 and γ-Al2O3) has been used. This can be attributed to a higher reactivity in the system and the dominance of dissolution-precipitation mechanism. However, the use of larger alumina (6 μm Al2O3) modifies the reaction pathway leading to a different reaction evolution. More specifically, the growth of SrAl2O4 sub-micron particles on the surface of hexagonal platelets of 6μm Al2O3 is promoted. The particles retain the shape of the original Al2O3 and this formation process can be attributed to a «core-shell» mechanism. The particles obtained exhibit different photoluminescent response as a function of the final morphology of the powder. Therefore, through this study, it has been elucidated the reaction mechanisms of SrAl2O4 formation assisted by (NaCl-KCl)e that are governed by the diffusion of SrCO3 and the reactivity of the alumina particles. Optimizing the Al2O3/SrO ratio of the SrAl2O4:Eu, Dy powders synthesized with 6 μm Al2O3 as a precursor, the secondary phases and the concentration of dopant needed can be reduced keeping the photoluminescent response of the synthesized powder. Compared with the commercial reference powder, up to 90% of the emission intensity of the reference powder has been achieved for the powder prepared by molten salt method using 6μm Al2O3 as alumina precursor. Concerning the initial intensity of the decay curve, 60% of the initial intensity of the reference powder has been obtained. Additionally, it is necessary to take into account that SrAl2O4 has two polymorphs: monoclinic symmetry that is stable at temperatures below 650oC and hexagonal symmetry that is stable above this temperature. Monoclinic phase shows luminescent properties. However, there is no clear agreement on the emission of the hexagonal structure. By molten salt, it is possible to stabilize the hexagonal phase of SrAl2O4 employing an excess of Al2O3 (Al2O3/SrO: 2) and γ-Al2O3 as a precursor. The existence of nanometric crystalline domains with lower size (≤20 nm) allows the stabilization of the hexagonal phase. Moreover, it has been evidenced that the hexagonal polymorph exhibits photoluminescent response. To sum up, the design of nanostructured SrAl2O4:Eu2+, Dy3+ materials allows to obtain different morphologies and as consequence different photoluminescent responses. The reduction of temperature, duration of the thermal treatment and the precursors materials needed imply the decrease of the economic cost of the material. Therefore, the viability, suitability and scalability of the synthesis strategy developed in this work to process SrAl2O4:Eu2+, Dy3+ are demonstrated.
Resumo:
El objetivo de la presente investigación es predecir los campos de velocidad, presión y temperatura en una cámara de combustión experimental, mediante la técnica de la simulación numérica de flujo de fluidos. Para ello se revisa el procedimiento de solución numérica de las ecuaciones de transporte, aplicadas a la cámara de combustión experimental. La simulación está basada en el software CFX 5.6, el cual fue adquirido por la universidad nacional experimental del Táchira por medio del Decanato de Post-grado y de Investigación. Se hace un estudio de la sensibilidad de malla para adecuar el criterio de convergencia que el software requiere. La cámara de combustión experimental empleada para éste estudio es una cámara de combustión diseñada por estudiantes de Pre-grado para determinar la temperatura de flama adiabática, aunque el diseño de esta cámara no es estándar, es útil para medir la temperatura en tiempo real. El combustible empleado para éste análisis es propano (C3H8) el cual es inyectado a la cámara de combustión por una tubería concéntrica al flujo de aire. En la solución de la simulación computacional se aprecia, a través del perfil de temperatura, la envolvente de la llama, formada por el contorno de temperatura máxima, la cual es similar a la observada en cualquier cámara de combustión.
Resumo:
Pensar en arquitectura dinámica es pensar en arquitectura viva, en edificios que ya no tienen cerramientos sino pieles, edificios inteligentes capaces de pensar, reaccionar y adaptarse al medio para protegerse de él y ahorrar energía. El interés por diseñar edificios en armonía con el ambiente ha ido variando a lo largo de la historia. Desde una preocupación por el clima en las primeras construcciones de la historia y especialmente en los edificios entre 1890 y 1930, el interés por una arquitectura eficiente se perdió en la mayoría de los edificios del siglo XX con la incorporación del aire acondicionado, lo que condujo hacia una arquitectura hermética sin ventilación natural. No se hablará de climatización eficiente hasta la crisis del petróleo de 1973, cuando las fachadas comienzan a cobrar de nuevo un papel fundamental. El progreso hacia una envolvente capaz de cambiar su forma y su geometría para adaptarse a los cambios del medio ha visto un gran avance en el siglo XXI, donde el desarrollo de la misma ha implicado entender el papel que tiene en controlar la luz y la temperatura, para llegar a ser una piel entre los mundos artificial y natural y que permita emplear las instalaciones de climatización únicamente como sistema de apoyo. Este trabajo pretende poner de manifiesto la importancia de la envolvente del edificio como medio de ahorro del consumo energético, explorando soluciones dinámicas e innovadoras que supondrán los cimientos de una nueva arquitectura
Resumo:
Este proyecto versa sobre el estudio y diseño de una central termosolar de torre central, así como de su rendimiento y producción. La característica especial de esta planta es que tiene como fin suministrar calor a un proceso químico: cracking térmico del metano para la producción de hidrógeno. Debido a que el cracking térmico tiene lugar en el interior de un tanque de metal líquido (reactor químico) y al peso del mismo, resulta conveniente dejar el reactor a nivel de suelo. Así pues, los rayos solares tienen que descender desde la parte superior de la torre hasta el reactor. Los rayos solares se reflejan en los heliostatos para volver a ser reflejados en la parte superior de la torre, donde hay otro espejo que conduce los rayos solares hasta el reactor. La localización elegida para realizar el estudio ha sido Tabernas, cerca de la Plataforma Solar de Almería (PSA). De la estación SIAR (Sistema de Información Agroclimática para el Regadío del Ministerio de Agricultura, Alimentación y Medio Ambiente del Gobierno de España). de Tabernas precisamente se han obtenido los datos de radiación global, y mediante una correlación kd-kt, se ha obtenido la radiación directa. Para el estudio de la energía aportada por el campo solar, se ha elegido un campo norte de heliostatos, debido a que un campo circular además de tener menor rendimiento en este proyecto no sería factible. Los heliostatos considerados son cuadrados de 11 x 11 m. Estos heliostatos apuntan hacia el punto (0, 0, 100) m en el sistema de coordenadas absoluto considerado para el proyecto, que coincide con una altura a 100 m en el centro interior de la torre. Este punto es uno de los focos del elipsoide virtual, del cual forma parte el reflector (espejo situado en la parte superior) y cuyo otro foco se sitúa en la parte superior del receptor (reactor), cuyo fin es dirigir los rayos hacia el reactor, como se ha indicado. Una vez definido el proyecto, se lleva a cabo un dimensionado del campo solar, con el cual puede obtenerse un campo de heliostatos. Tras realizar la simulación, se obtienen datos instantáneos y medios. A modo de ejemplo, se incluye el rendimiento por bloqueos y sombras a las 9 h de la mañana en enero, donde puede observarse que la sombra de la torre tiene una alta importancia sobre los heliostatos situados en la zona oeste. Del mismo modo, se han obtenido los datos de incidencia de los rayos solares sobre el receptor, de forma que puede caracterizarse la incidencia del flujo térmico sobre el mismo mediante un mallado. A continuación se incluye una imagen del número de rayos solares que inciden sobre el receptor a las 12 h en junio. Las conclusiones que pueden extraerse del proyecto son: El rendimiento anual de la planta es del 26 %. La producción anual de hidrógeno sería de 163,7 t. Para mayores potencias de plantas el rendimiento por sombras y bloqueos sería menor, al igual que el asociado al efecto coseno, a la dispersión y absorción atmosférica y al factor de interceptación. Para reducir el efecto del tamaño en los dos primeros rendimientos mencionados en el párrafo anterior podría elevarse la altura de la torre. Para aumentar el factor de interceptación podría estudiarse la colocación de espejos en el interior de la torre, de modo que reflejasen los rayos solares hasta el receptor.
Resumo:
Los recientes desarrollos tecnológicos permiten la transición de la oceanografía observacional desde un concepto basado en buques a uno basado en sistemas autónomos en red. Este último, propone que la forma más eficiente y efectiva de observar el océano es con una red de plataformas autónomas distribuidas espacialmente y complementadas con sistemas de medición remota. Debido a su maniobrabilidad y autonomía, los planeadores submarinos están jugando un papel relevante en este concepto de observaciones en red. Los planeadores submarinos fueron específicamente diseñados para muestrear vastas zonas del océano. Estos son robots con forma de torpedo que hacen uso de su forma hidrodinámica, alas y cambios de flotabilidad para generar movimientos horizontales y verticales en la columna de agua. Un sensor que mide conductividad, temperatura y profundidad (CTD) constituye un equipamiento estándar en la plataforma. Esto se debe a que ciertas variables dinámicas del Océano se pueden derivar de la temperatura, profundidad y salinidad. Esta última se puede estimar a partir de las medidas de temperatura y conductividad. La integración de sensores CTD en planeadores submarinos no esta exenta de desafíos. Uno de ellos está relacionado con la precisión de los valores de salinidad derivados de las muestras de temperatura y conductividad. Específicamente, las estimaciones de salinidad están significativamente degradadas por el retardo térmico existente, entre la temperatura medida y la temperatura real dentro de la celda de conductividad del sensor. Esta deficiencia depende de las particularidades del flujo de entrada al sensor, su geometría y, también se ha postulado, del calor acumulado en las capas de aislamiento externo del sensor. Los efectos del retardo térmico se suelen mitigar mediante el control del flujo de entrada al sensor. Esto se obtiene generalmente mediante el bombeo de agua a través del sensor o manteniendo constante y conocida su velocidad. Aunque recientemente se han incorporado sistemas de bombeo en los CTDs a bordo de los planeadores submarinos, todavía existen plataformas equipadas con CTDs sin dichos sistemas. En estos casos, la estimación de la salinidad supone condiciones de flujo de entrada al sensor, razonablemente controladas e imperturbadas. Esta Tesis investiga el impacto, si existe, que la hidrodinámica de los planeadores submarinos pudiera tener en la eficiencia de los sensores CTD. Específicamente, se investiga primero la localización del sensor CTD (externo al fuselaje) relativa a la capa límite desarrollada a lo largo del cuerpo del planeador. Esto se lleva a cabo mediante la utilización de un modelo acoplado de fluido no viscoso con un modelo de capa límite implementado por el autor, así como mediante un programa comercial de dinámica de fluidos computacional (CFD). Los resultados indican, en ambos casos, que el sensor CTD se encuentra fuera de la capa límite, siendo las condiciones del flujo de entrada las mismas que las del flujo sin perturbar. Todavía, la velocidad del flujo de entrada al sensor CTD es la velocidad de la plataforma, la cual depende de su hidrodinámica. Por tal motivo, la investigación se ha extendido para averiguar el efecto que la velocidad de la plataforma tiene en la eficiencia del sensor CTD. Con este propósito, se ha desarrollado un modelo en elementos finitos del comportamiento hidrodinámico y térmico del flujo dentro del CTD. Los resultados numéricos indican que el retardo térmico, atribuidos originalmente a la acumulación de calor en la estructura del sensor, se debe fundamentalmente a la interacción del flujo que atraviesa la celda de conductividad con la geometría interna de la misma. Esta interacción es distinta a distintas velocidades del planeador submarino. Específicamente, a velocidades bajas del planeador (0.2 m/s), la mezcla del flujo entrante con las masas de agua remanentes en el interior de la celda, se ralentiza debido a la generación de remolinos. Se obtienen entonces desviaciones significantes entre la salinidad real y aquella estimada. En cambio, a velocidades más altas del planeador (0.4 m/s) los procesos de mezcla se incrementan debido a la turbulencia e inestabilidades. En consecuencia, la respuesta del sensor CTD es mas rápida y las estimaciones de la salinidad mas precisas que en el caso anterior. Para completar el trabajo, los resultados numéricos se han validado con pruebas experimentales. Específicamente, se ha construido un modelo a escala del sensor CTD para obtener la confirmación experimental de los modelos numéricos. Haciendo uso del principio de similaridad de la dinámica que gobierna los fluidos incompresibles, los experimentos se han realizado con flujos de aire. Esto simplifica significativamente la puesta experimental y facilita su realización en condiciones con medios limitados. Las pruebas experimentales han confirmado cualitativamente los resultados numéricos. Más aun, se sugiere en esta Tesis que la respuesta del sensor CTD mejoraría significativamente añadiendo un generador de turbulencia en localizaciones adecuadas al interno de la celda de conductividad. ABSTRACT Recent technological developments allow the transition of observational oceanography from a ship-based to a networking concept. The latter suggests that the most efficient and effective way to observe the Ocean is through a fleet of spatially distributed autonomous platforms complemented by remote sensing. Due to their maneuverability, autonomy and endurance at sea, underwater gliders are already playing a significant role in this networking observational approach. Underwater gliders were specifically designed to sample vast areas of the Ocean. These are robots with a torpedo shape that make use of their hydrodynamic shape, wings and buoyancy changes to induce horizontal and vertical motions through the water column. A sensor to measure the conductivity, temperature and depth (CTD) is a standard payload of this platform. This is because certain ocean dynamic variables can be derived from temperature, depth and salinity. The latter can be inferred from measurements of temperature and conductivity. Integrating CTD sensors in glider platforms is not exempted of challenges. One of them, concerns to the accuracy of the salinity values derived from the sampled conductivity and temperature. Specifically, salinity estimates are significantly degraded by the thermal lag response existing between the measured temperature and the real temperature inside the conductivity cell of the sensor. This deficiency depends on the particularities of the inflow to the sensor, its geometry and, it has also been hypothesized, on the heat accumulated by the sensor coating layers. The effects of thermal lag are usually mitigated by controlling the inflow conditions through the sensor. Controlling inflow conditions is usually achieved by pumping the water through the sensor or by keeping constant and known its diving speed. Although pumping systems have been recently implemented in CTD sensors on board gliders, there are still platforms with unpumped CTDs. In the latter case, salinity estimates rely on assuming reasonable controlled and unperturbed flow conditions at the CTD sensor. This Thesis investigates the impact, if any, that glider hydrodynamics may have on the performance of onboard CTDs. Specifically, the location of the CTD sensor (external to the hull) relative to the boundary layer developed along the glider fuselage, is first investigated. This is done, initially, by applying a coupled inviscid-boundary layer model developed by the author, and later by using a commercial software for computational fluid dynamics (CFD). Results indicate, in both cases, that the CTD sensor is out of the boundary layer, being its inflow conditions those of the free stream. Still, the inflow speed to the CTD sensor is the speed of the platform, which largely depends on its hydrodynamic setup. For this reason, the research has been further extended to investigate the effect of the platform speed on the performance of the CTD sensor. A finite element model of the hydrodynamic and thermal behavior of the flow inside the CTD sensor, is developed for this purpose. Numerical results suggest that the thermal lag effect is mostly due to the interaction of the flow through the conductivity cell and its geometry. This interaction is different at different speeds of the glider. Specifically, at low glider speeds (0.2 m/s), the mixing of recent and old waters inside the conductivity cell is slowed down by the generation of coherent eddy structures. Significant departures between real and estimated values of the salinity are found. Instead, mixing is enhanced by turbulence and instabilities for high glider speeds (0.4 m/s). As a result, the thermal response of the CTD sensor is faster and the salinity estimates more accurate than for the low speed case. For completeness, numerical results have been validated against model tests. Specifically, a scaled model of the CTD sensor was built to obtain experimental confirmation of the numerical results. Making use of the similarity principle of the dynamics governing incompressible fluids, experiments are carried out with air flows. This significantly simplifies the experimental setup and facilitates its realization in a limited resource condition. Model tests qualitatively confirm the numerical findings. Moreover, it is suggested in this Thesis that the response of the CTD sensor would be significantly improved by adding small turbulators at adequate locations inside the conductivity cell.