758 resultados para TURANS EXTREMAL PROBLEM
Resumo:
This note investigates the motion control of an autonomous underwater vehicle (AUV). The AUV is modeled as a nonholonomic system as any lateral motion of a conventional, slender AUV is quickly damped out. The problem is formulated as an optimal kinematic control problem on the Euclidean Group of Motions SE(3), where the cost function to be minimized is equal to the integral of a quadratic function of the velocity components. An application of the Maximum Principle to this optimal control problem yields the appropriate Hamiltonian and the corresponding vector fields give the necessary conditions for optimality. For a special case of the cost function, the necessary conditions for optimality can be characterized more easily and we proceed to investigate its solutions. Finally, it is shown that a particular set of optimal motions trace helical paths. Throughout this note we highlight a particular case where the quadratic cost function is weighted in such a way that it equates to the Lagrangian (kinetic energy) of the AUV. For this case, the regular extremal curves are constrained to equate to the AUV's components of momentum and the resulting vector fields are the d'Alembert-Lagrange equations in Hamiltonian form.
Resumo:
This paper considers the motion planning problem for oriented vehicles travelling at unit speed in a 3-D space. A Lie group formulation arises naturally and the vehicles are modeled as kinematic control systems with drift defined on the orthonormal frame bundles of particular Riemannian manifolds, specifically, the 3-D space forms Euclidean space E-3, the sphere S-3, and the hyperboloid H'. The corresponding frame bundles are equal to the Euclidean group of motions SE(3), the rotation group SO(4), and the Lorentz group SO (1, 3). The maximum principle of optimal control shifts the emphasis for these systems to the associated Hamiltonian formalism. For an integrable case, the extremal curves are explicitly expressed in terms of elliptic functions. In this paper, a study at the singularities of the extremal curves are given, which correspond to critical points of these elliptic functions. The extremal curves are characterized as the intersections of invariant surfaces and are illustrated graphically at the singular points. It. is then shown that the projections, of the extremals onto the base space, called elastica, at these singular points, are curves of constant curvature and torsion, which in turn implies that the oriented vehicles trace helices.
Resumo:
The Boltzmann equation in presence of boundary and initial conditions, which describes the general case of carrier transport in microelectronic devices is analysed in terms of Monte Carlo theory. The classical Ensemble Monte Carlo algorithm which has been devised by merely phenomenological considerations of the initial and boundary carrier contributions is now derived in a formal way. The approach allows to suggest a set of event-biasing algorithms for statistical enhancement as an alternative of the population control technique, which is virtually the only algorithm currently used in particle simulators. The scheme of the self-consistent coupling of Boltzmann and Poisson equation is considered for the case of weighted particles. It is shown that particles survive the successive iteration steps.
Resumo:
A one-dimensional shock-reflection test problem in the case of slab, cylindrical, or spherical symmetry is discussed. The differential equations for a similarity solution are derived and solved numerically in conjunction with the Rankie-Hugoniot shock relations.
Resumo:
Solutions of a two-dimensional dam break problem are presented for two tailwater/reservoir height ratios. The numerical scheme used is an extension of one previously given by the author [J. Hyd. Res. 26(3), 293–306 (1988)], and is based on numerical characteristic decomposition. Thus approximate solutions are obtained via linearised problems, and the method of upwind differencing is used for the resulting scalar problems, together with a flux limiter for obtaining a second order scheme which avoids non-physical, spurious oscillations.
Resumo:
The genetic analysis workshop 15 (GAW15) problem 1 contained baseline expression levels of 8793 genes in immortalised B cells from 194 individuals in 14 Centre d’Etude du Polymorphisme Humane (CEPH) Utah pedigrees. Previous analysis of the data showed linkage and association and evidence of substantial individual variations. In particular, correlation was examined on expression levels of 31 genes and 25 target genes corresponding to two master regulatory regions. In this analysis, we apply Bayesian network analysis to gain further insight into these findings. We identify strong dependences and therefore provide additional insight into the underlying relationships between the genes involved. More generally, the approach is expected to be applicable for integrated analysis of genes on biological pathways.
Resumo:
Some simple variations of Buffon's well-known needle problem in probability are discussed, and an interesting observation connecting the corresponding results is then made
Resumo:
Overseas trained teachers (OTTs) have grown in numbers during the past decade, particularly in London and the South East of England. In this recruitment explosion many OTTs have experienced difficulties. In professional literature as well as press coverage OTTs often become part of a deficit discourse. A small-scale pilot investigation of OTT experience has begun to suggest why OTTs have been successful as well as the principal challenges they have faced. An important factor in their success was felt to be the quality of support in school from others on the staff. Major challenges included the complexity of the primary curriculum. The argument that globalisation leads to brain-drain may be exaggerated. Suggestions for further research are made, which might indicate the positive benefits OTTs can bring to a school.
Resumo:
In this paper, we discuss the problem of globally computing sub-Riemannian curves on the Euclidean group of motions SE(3). In particular, we derive a global result for special sub-Riemannian curves whose Hamiltonian satisfies a particular condition. In this paper, sub-Riemannian curves are defined in the context of a constrained optimal control problem. The maximum principle is then applied to this problem to yield an appropriate left-invariant quadratic Hamiltonian. A number of integrable quadratic Hamiltonians are identified. We then proceed to derive convenient expressions for sub-Riemannian curves in SE(3) that correspond to particular extremal curves. These equations are then used to compute sub-Riemannian curves that could potentially be used for motion planning of underwater vehicles.
Resumo:
Objective. To examine the association between worry and problem-solving skills and beliefs (confidence and perceived control) in primary school children. Method. Children (8–11 years) were screened using the Penn State Worry Questionnaire for Children. High (N ¼ 27) and low (N ¼ 30) scorers completed measures of anxiety, problem-solving skills (generating alternative solutions to problems, planfulness, and effectiveness of solutions) and problem-solving beliefs(confidence and perceived control). Results. High and low worry groups differed significantly on measures of anxiety and problem-solving beliefs (confidence and control) but not on problem-solving skills. Conclusions. Consistent with findings with adults, worry in children was associated with cognitive distortions, not skills deficits. Interventions for worried children may benefit froma focus on increasing positive problem-solving beliefs.