944 resultados para THERMAL GRAVIMETRIC ANALYSIS
Resumo:
Solid State M-2-MeO-CP compounds, where M stands for bivalent metals (Mn, Fe, Co, Ni, Cu and Zn) and 2-MeO-CP is 2-methoxycinnamylidenepyruvate, were synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), elemental analysis and complexometry were used to establish the stoichiometry and to study the thermal behaviour of these compounds in CO2 and N2 atmospheres. The results were consistent with the general formula: M(L)2∙H2O. In both atmospheres (CO2, N2) the thermal decomposition occurs in consecutive steps which are characteristic of each compound. For CO2 atmosphere the final residues were: Mn3O4, Fe3O4, Co3O4, NiO, Cu2O and ZnO, while under N2 atmosphere the thermal decomposition is still observed at 1000 º C.
Resumo:
Thermal stability and thermal decomposition of succinic acid, sodium succinate and its compounds with Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II) were investigated employing simultaneous thermogravimetry and differential thermal analysis (TG-DTA) in nitrogen and carbon dioxide atmospheres and TG-FTIR in nitrogen atmosphere. On heating, in both atmospheres the succinic acid melt and evaporate, while for the sodium succinate the thermal decomposition occurs with the formation of sodium carbonate. For the transition metal succinates the final residue up to 1180 ºC in N2 atmosphere was a mixture of metal and metal oxide in no simple stoichiometric relation, except for Zn compound, where the residue was a small quantity of carbonaceous residue. For the CO2 atmosphere the final residue up to 980 ºC was: MnO, Fe3O4, CoO, ZnO and mixtures of Ni, NiO and Cu, Cu2O.
Resumo:
Solid-state Ln-L compounds, where Ln stands for heavy trivalent lanthanides (Tb-Lu) and L is malonate, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy, TG-FTIR system, elemental analysis and complexometry were used to characterize and to study the thermal behaviour of these compounds. The dehydration of the compounds begins at 303 K and the anhydrous compounds are stable up to 548 K. The results also provided information concerning the ligand's denticity, thermal behaviour and identification of some gaseous products evolved during the thermal decomposition of these compounds.
Resumo:
ABSTRACT The climate change, the quest for sustainability and the strong environmental pressures for alternatives to traditional fossil fuels have increased the interest in the search and use of renewable energy sources. Among them stands out the biomass of charcoal coming from renewable forests, widely used as a thermal reductant in the steel industry in the detriment of the use of mineral coal coke. This study aimed to compare different operating procedures of immediate chemical analysis of charcoal. Seven essays to immediate chemical analysis were compared, spread between procedures performed by Brazilian companies and laboratories, the test described by NBR 8112 and one realized with a thermogravimetric analyzer (TGA) using the parameters of the NBR 8112. There were significant differences in the volatiles matter content and consequently in the fixed carbon contents found. The differences between the procedures and the NBR 8112 were caused by an excess burning time, a mass sample above or below the standard or inappropriate container used for burning. It observed that the TGA appraisal of the volatiles content must be carried out with a burning time equal to 2 minutes to obtain results similar to those of the NBR 8112 norm. Moreover, the ash content values were statistically identical and the particles size did not influence the differences between means.
Resumo:
The simulation programs are important tools to analyze the different energetic alternatives, including the use of renewable energy. The objective of this study was to analyze comparatively the different computer tools available for modeling of solar water heaters. Among the main simulation software of solar thermal systems, there are: RETScreen International, EnergyPlus, TRNSYS, SolDesigner, SolarPro, e T*SOL. Among the tools mentioned, only EnergyPlus and RETScreen International are free, but they allow obtaining interesting results when applied together. The first one has a detailed module of energy analysis of solar water heaters, while the second one provides an detailed economic feasibility study and an assessment of emissions of greenhouse gases. RETScreen International and EnergyPlus programs are aimed at a diverse audience, including designers, researchers and energy planners.
Resumo:
The aim of this study was to investigate the effect of pre-slaughter handling on the occurrence of PSE (Pale, Soft, and Exudative) meat in swine slaughtered at a commercial slaughterhouse located in the metropolitan region of Dourados, Mato Grosso do Sul, Brazil. Based on the database (n=1,832 carcasses), it was possible to apply the integrated multivariate analysis for the purpose of identifying, among the selected variables, those of greatest relevance to this study. Results of the Principal Component Analysis showed that the first five components explained 89.28% of total variance. In the Factor Analysis, the first factor represented the thermal stress and fatiguing conditions for swine during pre-slaughter handling. In general, this study indicated the importance of the pre-slaughter handling stages, evidencing those of greatest stress and threat to animal welfare and pork quality, which are transport time, resting period, lairage time before unloading, unloading time, and ambience.
Resumo:
In the first week of a chick life, broilers are very sensitive to different conditions outside their thermoneutral zone. Thus, the goal of this study was to evaluate the behaviors and productive responses of broilers subjected to conditions of thermal comfort or challenge at different intensities (27, 30, 33 and 36ºC) and durations (1, 2, 3 and 4 days starting on the second day of life). In the experiment, ten minutes of images from each hour of each treatment were analyzed to evaluate the key behaviors of the birds. Similar behavior at different dry-bulb air temperatures were identified by using Ward's method of cluster analysis. These behaviors were grouped by dendograms in which the similarity of these data was qualified. Feed intake, water intake and body mass of these animals were evaluated and used to support the observed behaviors. Thus, a similar huddling behavior was observed in the birds from the 2nd to the 5th day of life subjected to 27ºC and 30ºC, while at 30ºC and 33ºC the behavior of accessing feeders and drinkers was also similar. Chicks subjected to 33ºC presented the best performance, and at 30 and 36ºC showed intermediate development.
Resumo:
Brazil is a country of tropical climate, a fact that hinders the poultry production in the aspect of thermal comfort. Thus, we aimed to evaluate the thermal environment in commercial poultry houses with different covers during the months of December 2012 to May 2013, in the municipality of Rio Verde, Goiás. The experimental design was completely randomized in split plots with factorial arrangement of treatments 2x3, being two shed models (thermal and aluminum roof tiles) and three sections within each shed (initial, central and final) for 182 days, having the days as replicates. The thermal environment was assessed through thermal comfort indices: Temperature and Humidity Index, Black Globe Temperature and Humidity Index, Radiant Heat Load and Enthalpy. The data was analyzed by SISVAR 5.1., through the analysis of variance, the Scott Knott test used to compare the means, considering a significance level of 1%. The results showed a significant statistical difference between the sheds and the points assessed (P < 0.05). The thermal shed had the lowest values for the environmental variables (Dbt and Bgt) and thermal indices studied, but larger values for the RH compared to the shed with aluminum covering. The use of thermal covers minimizes the difference in temperature range throughout various times of the day, being at 14:00 o'clock the prominence time to others.
Resumo:
This doctoral thesis presents a study on the development of a liquid-cooled frame salient pole permanent-magnet-exited traction machine for a four-wheel-driven electric car. The emphasis of the thesis is put on a radial flux machine design in order to achieve a light-weight machine structure for traction applications. The design features combine electromagnetic and thermal design methods, because traction machine operation does not have a strict operating point. Arbitrary load cycles and the flexible supply require special attention in the design process. It is shown that accurate modelling of the machine magnetic state is essential for high-performance operation. The saturation effect related to the cross-saturation has to be taken carefully into account in order to achieve the desired operation. Two prototype machines have been designed and built for testing: one totally enclosed machine with a special magnet module pole arrangement and another through-ventilated machine with a more traditional embedded magnet structure. Both structures are built with magnetically salient structures in order to increase the torque production capability with the reluctance torque component. Both machine structures show potential for traction usage. However, the traditional embedded magnet design turns out to be mechanically the more secure one of these two machine options.
Resumo:
During vehicle deceleration due to braking there is friction between the lining surface and the brake drum or disc. In this process the kinetic energy of vehicle is turned into thermal energy that raises temperature of the components. The heating of the brake system in the course of braking is a great problem, because besides damaging the system, it may also affect the wheel and tire, which can cause accidents. In search of the best configuration that considers the true conditions of use, without passing the safety limits, models and formulations are presented with respect to the brake system, considering different braking conditions and kinds of brakes. Some modeling was analyzed using well-known methods. The flat plate model considering energy conservation was applied to a bus, using for this a computer program. The vehicle is simulated to undergo an emergency braking, considering the change of temperature on the lining-drum. The results include deceleration, braking efficiency, wheel resistance, normal reaction on the tires and the coefficient of adhesion. Some of the results were compared with dynamometer tests made by FRAS-LE and others were compared with track tests made by Mercedes-Benz. The convergence between the results and the tests is sufficient to validate the mathematical model. The computer program makes it possible to simulate the brake system performance in the vehicle. It assists the designer during the development phase and reduces track tests.
Resumo:
Thermal louvers, using movable or rotating shutters over a radiating surface, have gained a wide acceptance as highly efficient devices for controlling the temperature of a spacecraft. This paper presents a detailed analysis of the performance of a rectangular thermal louver with movable blades. The radiative capacity of the louver, determined by its effective emittance, is calculated for different values of the blades opening angle. Experimental results obtained with a prototype of a spacecraft thermal louver show good agreement with the theoretical values.
Resumo:
The experimental technique used for detection of subcooled boiling through analysis of the fluctuation contained in pressure transducer signals is presented. This work was partly conducted at the Institut für Kerntechnik und zertörungsfreie Prüfverfahren von Hannover (IKPH, Germany) in a thermal-hydraulic circuit with one electrically heated rod with annular geometry test section. Piezoresistive pressure sensors are used for onset of nucleate boiling (ONB) and onset of fully developed boiling (OFDB) detection using spectral analysis/ signal correlation techniques. Experimental results are interpreted by phenomenological analysis of these two points and compared with existing correlation. The results allow us to conclude that this technique is adequate for the detection and monitoring of the ONB and OFDB.
Resumo:
This thesis presents a one-dimensional, semi-empirical dynamic model for the simulation and analysis of a calcium looping process for post-combustion CO2 capture. Reduction of greenhouse emissions from fossil fuel power production requires rapid actions including the development of efficient carbon capture and sequestration technologies. The development of new carbon capture technologies can be expedited by using modelling tools. Techno-economical evaluation of new capture processes can be done quickly and cost-effectively with computational models before building expensive pilot plants. Post-combustion calcium looping is a developing carbon capture process which utilizes fluidized bed technology with lime as a sorbent. The main objective of this work was to analyse the technological feasibility of the calcium looping process at different scales with a computational model. A one-dimensional dynamic model was applied to the calcium looping process, simulating the behaviour of the interconnected circulating fluidized bed reactors. The model incorporates fundamental mass and energy balance solvers to semi-empirical models describing solid behaviour in a circulating fluidized bed and chemical reactions occurring in the calcium loop. In addition, fluidized bed combustion, heat transfer and core-wall layer effects were modelled. The calcium looping model framework was successfully applied to a 30 kWth laboratory scale and a pilot scale unit 1.7 MWth and used to design a conceptual 250 MWth industrial scale unit. Valuable information was gathered from the behaviour of a small scale laboratory device. In addition, the interconnected behaviour of pilot plant reactors and the effect of solid fluidization on the thermal and carbon dioxide balances of the system were analysed. The scale-up study provided practical information on the thermal design of an industrial sized unit, selection of particle size and operability in different load scenarios.
Resumo:
Ion mobility spectrometry (IMS) is a straightforward, low cost method for fast and sensitive determination of organic and inorganic analytes. Originally this portable technique was applied to the determination of gas phase compounds in security and military use. Nowadays, IMS has received increasing attention in environmental and biological analysis, and in food quality determination. This thesis consists of literature review of suitable sample preparation and introduction methods for liquid matrices applicable to IMS from its early development stages to date. Thermal desorption, solid phase microextraction (SPME) and membrane extraction were examined in experimental investigations of hazardous aquatic pollutants and potential pollutants. Also the effect of different natural waters on the extraction efficiency was studied, and the utilised IMS data processing methods are discussed. Parameters such as extraction and desorption temperatures, extraction time, SPME fibre depth, SPME fibre type and salt addition were examined for the studied sample preparation and introduction methods. The observed critical parameters were extracting material and temperature. The extraction methods showed time and cost effectiveness because sampling could be performed in single step procedures and from different natural water matrices within a few minutes. Based on these experimental and theoretical studies, the most suitable method to test in the automated monitoring system is membrane extraction. In future an IMS based early warning system for monitoring water pollutants could ensure the safe supply of drinking water. IMS can also be utilised for monitoring natural waters in cases of environmental leakage or chemical accidents. When combined with sophisticated sample introduction methods, IMS possesses the potential for both on-line and on-site identification of analytes in different water matrices.
Resumo:
Advancements in IC processing technology has led to the innovation and growth happening in the consumer electronics sector and the evolution of the IT infrastructure supporting this exponential growth. One of the most difficult obstacles to this growth is the removal of large amount of heatgenerated by the processing and communicating nodes on the system. The scaling down of technology and the increase in power density is posing a direct and consequential effect on the rise in temperature. This has resulted in the increase in cooling budgets, and affects both the life-time reliability and performance of the system. Hence, reducing on-chip temperatures has become a major design concern for modern microprocessors. This dissertation addresses the thermal challenges at different levels for both 2D planer and 3D stacked systems. It proposes a self-timed thermal monitoring strategy based on the liberal use of on-chip thermal sensors. This makes use of noise variation tolerant and leakage current based thermal sensing for monitoring purposes. In order to study thermal management issues from early design stages, accurate thermal modeling and analysis at design time is essential. In this regard, spatial temperature profile of the global Cu nanowire for on-chip interconnects has been analyzed. It presents a 3D thermal model of a multicore system in order to investigate the effects of hotspots and the placement of silicon die layers, on the thermal performance of a modern ip-chip package. For a 3D stacked system, the primary design goal is to maximise the performance within the given power and thermal envelopes. Hence, a thermally efficient routing strategy for 3D NoC-Bus hybrid architectures has been proposed to mitigate on-chip temperatures by herding most of the switching activity to the die which is closer to heat sink. Finally, an exploration of various thermal-aware placement approaches for both the 2D and 3D stacked systems has been presented. Various thermal models have been developed and thermal control metrics have been extracted. An efficient thermal-aware application mapping algorithm for a 2D NoC has been presented. It has been shown that the proposed mapping algorithm reduces the effective area reeling under high temperatures when compared to the state of the art.