839 resultados para TETRAD-FORMING OLIGONUCLEOTIDES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Homologous DNA recombination is a fundamental, regenerative process within living organisms. However, in most organisms, homologous recombination is a rare event, requiring a complex set of reactions and extensive homology. We demonstrate in this paper that Beta protein of phage λ generates recombinants in chromosomal DNA by using synthetic single-stranded DNAs (ssDNA) as short as 30 bases long. This ssDNA recombination can be used to mutagenize or repair the chromosome with efficiencies that generate up to 6% recombinants among treated cells. Mechanistically, it appears that Beta protein, a Rad52-like protein, binds and anneals the ssDNA donor to a complementary single-strand near the DNA replication fork to generate the recombinant. This type of homologous recombination with ssDNA provides new avenues for studying and modifying genomes ranging from bacterial pathogens to eukaryotes. Beta protein and ssDNA may prove generally applicable for repairing DNA in many organisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

trkB is the high-affinity receptor for brain-derived neurotrophic factor (BDNF), a trophic molecule with demonstrated effects on the survival and differentiation of a wide variety of neuronal populations. In the mammalian retina, trkB is localized to both ganglion cells and numerous cells in the inner nuclear layer. Much information on the role of BDNF in neuronal development has been derived from the study of trkB- and BDNF-deficient mutant mice. This includes an attenuation of the numbers of cortical neurons immunopositive for the calcium-binding proteins, parvalbumin, and calbindin. Unfortunately, these mutant animals typically fail to survive for > 24-48 hr after birth. Since most retinal neuronal differentiation occurs postnatally, we have devised an alternative scheme to suppress the expression of trkB in the retina to examine the role of BDNF on the postnatal development of neurons of the inner retina. Neonatal rats were treated with intraocular injection of an antisense oligonucleotide (1-2 microliters of 10-100 microM solution) targeted to the trkB mRNA. Immunohistochemistry with a polyclonal antibody to trkB showed that the expression of trkB in retinal neurons was suppressed 48-72 hr following a single injection. Northern blot analysis demonstrated that antisense treatment had no effect on the level of trkB mRNA, even after multiple injections. This suggests an effect of trkB antisense treatment on protein translation, but not on RNA transcription. No alterations were observed in the thickness of retinal cellular or plexiform layers, suggesting that BDNF is not the sole survival factor for these neurons. There were, however, alterations in the patterns of immunostaining for parvalbumin, a marker for the narrow-field, bistratified AII amacrine cell-a central element of the rod (scotopic) pathway. This was evidenced by a decrease in both the number of immunostained somata (> 50%) and in the intensity of immunolabeling. However, the immunostaining pattern of calbindin was not affected. These studies suggest that the ligands for trkB have specific effects on the neurochemical phenotypic expression of inner retinal neurons and in the development of a well-defined retinal circuit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using an in vitro selection approach, we have isolated oligonucleotides that can bind to a DNA hairpin structure. Complex formation of these oligonucleotides with the target hairpin involves some type of triple-stranded structure with noncanonical interaction, as indicated by bandshift assays and footprinting studies. The selected oligomers can block restriction endonuclease cleavage of the target hairpin in a sequence-specific manner. We demonstrate that in vitro selection can extend the antisense approach to functional targeting of secondary structure motifs. This could provide a basis for interfering with regulatory processes mediated by a variety of nucleic acid structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A maximum likelihood approach of half tetrad analysis (HTA) based on multiple restriction fragment length polymorphism (RFLP) markers was developed. This procedure estimates the relative frequencies of 2n gametes produced by mechanisms genetically equivalent to first division restitution (FDR) or second division restitution and simultaneously locates the centromere within a linkage group of RFLP marker loci. The method was applied to the diploid alfalfa clone PG-F9 (2n = 2x = 16) previously selected because of its high frequency of 2n egg production. HTA was based on four RFLP loci for which PG-F9 was heterozygous with codominant alleles that were absent in the tetraploid tester. Models including three linked and one unlinked RFLP loci were developed and tested. Results of the HTA showed that PG-F9 produced 6% FDR and 94% second division restitution 2n eggs. Information from a marker locus belonging to one linkage group was used to more precisely locate the centromere on a different linkage group. HTA, together with previous cytological analysis, indicated that in PG-F9, FDR 2n eggs are likely produced by diplospory, a mechanism common among apomictic species. The occurrence of FDR 2n eggs in plant species and their importance for crop evolution and breeding is discussed together with the potential applicability of multilocus HTA in the study of reproductive mutants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mice lacking the complex subset of N-glycans due to inactivation of the Mgat1 gene die at mid-gestation, making it difficult to identify specific biological functions for this class of cell surface carbohydrates. To circumvent this embryonic lethality and to uncover tissue-specific functions for complex N-glycans, WW6 embryonic stem cells with inactivated Mgat1 alleles were tracked in chimeric embryos. The Mgat1 gene encodes N-acetylglucosaminyltransferase I (Glc-NAc-TI; EC 2.4.1.101), the transferase that initiates the synthesis of complex N-glycans. WW6 cells carry an inert beta-globin transgene that allows their identification in chimeras by DNA-DNA in situ hybridization. Independent Mgat1-/- and Mgat1+/- mutant WW6 isolates contributed like parent WW6 cells to the tissues of embryonic day (E) 10.5 to E16.5 chimeras. However, a cell type-specific difference was observed in lung. Homozygous null Mgat1-/- WW6 cells did not contribute to the epithelial layer in more than 99% bronchi. This deficiency was corrected by transfection of a Mgat1 transgene. Interestingly, heterozygous Mgat1+/- WW6 cells were also deficient in populating the layer of bronchial epithelium. Furthermore, examination of lung bud in E9.5 Mgat1-/- mutant embryos showed complete absence of an organized epithelial cell layer in the bronchus. Thus, complex N-glycans are required to form a morphologically recognizable bronchial epithelium, revealing an in vivo, cell type-specific function for this class of N-glycans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mammalian olfactory epithelium (OE) supports continual neurogenesis throughout life, suggesting that a neuronal stem cell exists in this system. In tissue culture, however, the capacity of the OE for neurogenesis ceases after a few days. In an attempt to identify conditions that support the survival of neuronal stem cells, a population of neuronal progenitors was isolated from embryonic mouse OE and cultured in defined serum-free medium. The vast majority of cells rapidly gave rise to neurons, which died shortly thereafter. However, when purified progenitors were co-cultured with cells derived from the stroma underlying the OE, a small subpopulation (0.07-0.1%) gave rise to proliferative colonies. A morphologically identifiable subset of these colonies generated new neurons as late as 7 days in vitro. Interestingly, development of these neuronal colonies was specifically inhibited when purified progenitors were plated onto stromal feeder cells in the presence of a large excess of differentiated OE neurons. These results indicate that a rare cell type, with the potential to undergo prolonged neurogenesis, can be isolated from mammalian OE and that stroma-derived factors are important in supporting neurogenesis by this cell. The data further suggest that differentiated neurons provide a signal that feeds back to inhibit production of new neurons by their own progenitors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cleavage of membrane-associated proteins with the release of biologically active macromolecules is an emerging theme in biology. However, little is known about the nature and regulation of the involved proteases or about the physiological inducers of the shedding process. We here report that rapid and massive shedding of the interleukin 6 receptor (IL-6R) and the lipopolysaccharide receptor (CD14) occurs from primary and transfected cells attacked by two prototypes of pore-forming bacterial toxins, streptolysin O and Escherichia coli hemolysin. Shedding is not induced by an streptolysin O toxin mutant which retains cell binding capacity but lacks pore-forming activity. The toxin-dependent cleavage site of the IL-6R was mapped to a position close to, but distinct from, that observed after stimulation with phorbol myristate acetate. Soluble IL-6R that was shed from toxin-treated cells bound its ligand and induced an IL-6-specific signal in cells that primarily lacked the IL-6R. Transsignaling by soluble IL-6R and soluble CD14 is known to dramatically broaden the spectrum of host cells for IL-6 and lipopolysaccharide, and is thus an important mechanism underlying their systemic inflammatory effects. Our findings uncover a novel mechanism that can help to explain the long-range detrimental action of pore-forming toxins in the host organism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genes of the homeotic complex (HOX) encode DNA binding homeodomain proteins that control developmental fates by differentially regulating the transcription of downstream target genes. Despite their unique in vivo functions, disparate HOX proteins often bind to very similar DNA sequences in vitro. Thus, a critical question is how HOX proteins select the correct sets of target genes in vivo. The homeodomain proteins encoded by the Drosophila extradenticle gene and its mammalian homologues, the pbx genes, contribute to HOX specificity by cooperatively binding to DNA with HOX proteins. For example, the HOX protein labial cooperatively binds with extradenticle protein to a 20-bp oligonucleotide that is sufficient to direct a labial-like expression pattern in Drosophila embryos. Here we have analyzed the protein-DNA interactions that are important for forming the labial-extradenticle-DNA complex. The data suggest a model in which labial and extradenticle, separated by only 4 bp, bind this DNA as a heterodimer in a head-to-tail orientation. We have confirmed several aspects of this model by characterizing extradenticle-HOX binding to mutant oligonucleotides. Most importantly, mutations in base pairs predicted to contact the HOX N-terminal arm resulted in a change in HOX preference in the heterodimer, from labial to Ultrabithorax. These results demonstrate that extradenticle prefers to bind cooperatively with different HOX proteins depending on subtle differences in the heterodimer binding site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 20-mer phosphorothioate oligonucleotide (AS1) was designed to hybridize to the message for the rat kidney sodium phosphate cotransporter NaPi-2 close to the translation initiation site. Single intravenous doses of this oligonucleotide were given to rats maintained on a low phosphorus diet to increase NaPi-2 expression. At 3 days after oligonucleotide infusion, rats receiving 2.5 micromol of AS1 exhibited a reduction in renal NaPi-2 to cyclophilin mRNA ratio by 40% +/- 17%, and rats receiving 7.5 micromol of AS1 exhibited a reduction in NaPi-2 to cyclophilin mRNA ratio by 46% +/- 21%. Reversed-sequence AS1 was without effect. The higher dose of 7.5 micromol of AS1 also reduced the rate of phosphate uptake into renal brush border membrane vesicles and the expression of NaPi-2 protein detected by Western blotting in these vesicles. Reversed sequence AS1 was again without effect on these parameters. These results suggest that systemically infused oligonucleotides can exert antisense effects in the renal proximal tubule.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agarose-encapsulated, metabolically active, permeabilized nuclei from human hematopoietic cell lines were tested for Z-DNA formation in the beta-globin gene cluster. Biotinylated monoclonal antibodies against Z-DNA were diffused into the nuclei and cross-linked to DNA with a 10-ns laser exposure at 266 nm. Following digestion with restriction enzymes, fragments that had formed Z-DNA were isolated. Seventeen regions with Z-DNA sequence motifs in the 73-kb region were studied by PCR amplification, and five were found in the Z conformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteoblasts express calcium channels that are thought to be involved in the transduction of extracellular signals regulating bone metabolism. The molecular identity of the pore-forming subunit (alpha 1) of L-type calcium channel(s) was determined in rat osteosarcoma UMR-106 cells, which express an osteoblast phenotype. A homology-based reverse transcriptase-polymerase chain reaction cloning strategy was employed that used primers spanning the fourth domain. Three types of cDNAs were isolated, corresponding to the alpha 1S (skeletal), alpha 1C (cardiac), and alpha 1D (neuroendocrine) isoforms. In the transmembrane segment IVS3 and the extracellular loop formed by the IVS3-S4 linker, a single pattern of mRNA splicing was found that occurs in all three types of calcium channel transcripts. Northern blot analysis revealed an 8.6-kb mRNA that hybridized to the alpha 1C probe and 4.8- and 11.7-kb mRNAs that hybridized to the alpha 1S and alpha 1D probes. Antisense oligonucleotides directed to the calcium channel alpha 1D transcript, but not those directed to alpha 1S or alpha 1C transcripts, inhibited the rise of intracellular calcium induced by parathyroid hormone. However, alpha 1D antisense oligonucleotides had no effect on the accumulation of cAMP induced by parathyroid hormone. When L-type calcium channels were activated with Bay K 8644, antisense oligonucleotides to each of the three isoforms partially inhibited the rise of intracellular calcium. The present results provide evidence for the expression of three distinct calcium channel alpha 1-subunit isoforms in an osteoblast-like cell line. We conclude that the alpha 1D isoform is selectively activated by parathyroid hormone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many filamentous cyanobacteria nitrogen fixation occurs in differentiated cells called heterocysts. Filamentous strains that do not form heterocysts may fix nitrogen in vegetative cells, primarily under anaerobic conditions. We describe here two functional Mo-dependent nitrogenases in a single organism, the cyanobacterium Anabaena variabilis. Using a lacZ reporter with a fluorescent beta-galactoside substrate for in situ localization of gene expression, we have shown that the two clusters of nif genes are expressed independently. One nitrogenase functions only in heterocysts under either aerobic or anaerobic growth conditions, whereas the second nitrogenase functions only under anaerobic conditions in vegetative cells and heterocysts. Differences between the two nif clusters suggest that the nitrogenase that is expressed in heterocysts is developmentally regulated while the other is regulated by environmental factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated two regions of the viral RNA of human immunodeficiency virus type 1 (HIV-1) as potential targets for antisense oligonucleotides. An oligodeoxynucleotide targeted to the U5 region of the viral genome was shown to block the elongation of cDNA synthesized by HIV-1 reverse transcriptase in vitro. This arrest of reverse transcription was independent of the presence of RNase H activity associated with the reverse transcriptase enzyme. A second oligodeoxynucleotide targeted to a site adjacent to the primer binding site inhibited reverse transcription in an RNase H-dependent manner. These two oligonucleotides were covalently linked to a poly(L-lysine) carrier and tested for their ability to inhibit HIV-1 infection in cell cultures. Both oligonucleotides inhibited virus production in a sequence- and dose-dependent manner. PCR analysis showed that they inhibited proviral DNA synthesis in infected cells. In contrast, an antisense oligonucleotide targeted to the tat sequence did not inhibit proviral DNA synthesis but inhibited viral production at a later step of virus development. These experiments show that antisense oligonucleotides targeted to two regions of HIV-1 viral RNA can inhibit the first step of viral infection--i.e., reverse transcription--and prevent the synthesis of proviral DNA in cell cultures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The clonal rat pituitary cell line GH4C1 expresses the genes for several voltage-dependent potassium channels including Kv1.5 and Kv1.4. Dexamethasone, a glucocorticoid agonist, induces a slowly inactivating potassium current in these cells but does not alter the amplitude of a rapidly inactivating component of potassium current. We have found that the induction of the slowly inactivating current can be blocked by an antisense phosphorothioate deoxyoligonucleotide to the Kv1.5 mRNA sequence. In contrast, antisense deoxyoligonucleotides against Kv1.4 mRNA specifically decrease the expression of the dexamethasone-insensitive rapidly inactivating current. These results demonstrate the usefulness of antisense oligonucleotides in correlating potassium currents with specific potassium channel proteins in the cell types in which they are naturally expressed.