958 resultados para T-cell Responses
Resumo:
A pathogenic role for self-reactive cells against the stress protein Hsp60 has been proposed as one of the events leading to autoimmune destruction of pancreatic beta cells in the diabetes of nonobese diabetic (NOD) mice. To examine this hypothesis, we generated transgenic NOD mice carrying a murine Hsp60 transgene driven by the H-2E alpha class II promoter. This would be expected to direct expression of the transgene to antigen-presenting cells including those in the thymus and so induce immunological tolerance by deletion. Detailed analysis of Hsp60 expression revealed that the endogenous gene is itself expressed strongly in thymic medullary epithelium (and weakly in cortex) yet fails to induce tolerance. Transgenic mice with retargeted Hsp60 showed overexpression of the gene in thymic cortical epithelium and in bone marrow-derived cells. Analysis of spontaneous T-cell responses to a panel of self and heterologous Hsp60 antigens showed that tolerance to the protein had not been induced, although responses to an immunodominant 437-460 epitope implicated in disease were suppressed, probably indicating an epitope shift. This correlated with changes in disease susceptibility: insulitis in transgenic mice was substantially reduced so that pathology rarely progressed beyond periislet infiltration. This was reflected in a substantial reduction in hyperglycemia and disease. These data indicate that T cells specific for some epitopes of murine Hsp60 are likely to be involved in the islet-cell destruction that occurs in NOD mice.
Resumo:
We have used suspension-cultured parsley cells (Petroselinum crispum) and an oligopeptide elicitor derived from a surface glycoprotein of the phytopathogenic fungus Phytophthora megasperma f.sp. glycinea to study the signaling pathway from elicitor recognition to defense gene activation. Immediately after specific binding of the elicitor by a receptor in the plasma membrane, large and transient increases in several inorganic ion fluxes (Ca2+, H+, K+, Cl-) and H2O2 formation are the first detectable plant cell responses. These are rapidly followed by transient changes in the phosphorylation status of various proteins and by the activation of numerous defense-related genes, concomitant with the inactivation of several other, non-defense-related genes. A great diversity of cis-acting elements and trans-acting factors appears to be involved in elicitor-mediated gene regulation, similar to the apparently complex nature of the signal transduced intracellularly. With few exceptions, all individual defense responses analyzed in fungus-infected parsley leaves have been found to be closely mimicked in elicitor-treated, cultured parsley cells, thus validating the use of the elicitor/cell culture system as a valuable model system for these types of study.
Resumo:
The phenotype and antigenic specificity of cells secreting interleukin (IL) 4, IL-6, and interferon gamma was studied in mice during primary and secondary immune responses. T lymphocytes were the major source of interferon gamma, whereas non-B/non-T cells were the dominant source of IL-4 and IL-6 in the spleens of immunized animals. Cytokine-secreting non-B/non-T cells expressed surface receptors for IgE and/or IgG types II/III. Exposing these cells to antigen-specific IgE or IgG in vivo (or in vitro) "armed" them to release IL-4 and IL-6 upon subsequent antigenic challenge. These findings suggest that non-B/non-T cells may represent the "natural immunity" analogue of CD4+ T helper type 2 cells and participate in a positive feedback loop involved in the perpetuation of T helper type 2 cell responses.
Resumo:
INTRODUÇÃO: Líquen plano (LP) é uma doença mucocutânea de natureza inflamatória crônica de etiologia ainda desconhecida. A estimulação da imunidade inata via os receptores Toll-like (TLRs) podem influenciar as células dendríticas e direcionar a resposta de células T CD4+ e CD8+ efetoras, assim como também favorecer o estado inflamatório do LP. OBJETIVOS: Avaliar o perfil fenotípico de células dendríticas mielóides (mDCs) e plasmocitóides (pDCs) e de linfócitos T CD4+ e CD8+ após estímulo com agonistas de TLRs no sangue periférico de pacientes com LP. Além disto, avaliar a frequência, perfil de maturação e os subtipos de células T CD4+ e TCD8+ reguladores. MÉTODOS: Foram selecionados 18 pacientes com LP (15 mulheres, 3 homens), com 41,57 ± 4,73 anos de idade e um grupo controle com 22 indivíduos sadios (18 mulheres, 4 homens), com 43,92 ± 7,83 anos de idade. As células mononucleares (CMNs) de sangue periférico foram avaliadas por citometria de fluxo quanto à: 1) Produção de TNF-? em mDCs e de IFN-? em pDCs em CMNs ativadas por agonistas de TLR 4, 7, 7/8 e 9; 2) Análise de células T CD4+ e CD8+ monofuncionais e polifuncionais após estímulo com agonistas de TLR 4, 7/8, 9 e enterotoxina B de Staphylococcus aureus (SEB); 3) Avaliação de células Th17 e Th22/Tc22 em CMNs após estímulo com SEB; 4) Frequência, perfil de maturação e subtipos de células T CD4+ e CD8+ reguladoras. RESULTADOS: 1) Nos pacientes com LP foi demonstrado um aumento na frequência de mDCs TNF-alfa+ após estímulo com agonistas de TLR4/LPS e TLR7-8/CL097, mas com imiquimode/TLR7 houve diminuição da expressão de CD83. Já nas pDCs do grupo LP, o imiquimode foi capaz de diminuir a expressão de CD80 e o CpG/TLR9 diminuiu a expressão de CD83 no LP. 2) As células T CD4+ secretoras de IL-10 mostraram aumento da frequência nos níveis basais, que diminuiu após estímulo com LPS e SEB. Em contraste, a produção de IFN-y aumentou em resposta ao LPS enquanto diminuiu para CpG. As células T CD4+ polifuncionais, secretoras de 5 citocinas simultâneas (CD4+IL-17+IL-22+TNF+IL-10+IFN-y+) diminuíram no LP após estímulo com CL097 e CpG. Entretanto, na ausência de IL-10, houve aumento da frequência de células CD4+IL-17+IL-22+TNF+IFN-y+ em resposta ao LPS. Um aumento na polifuncionalidade foi observado em células TCD4+ que expressam CD38, marcador de ativação crônica e na ausência de IL-10. Similarmente, às TCD4+, uma diminuição de células T CD8+ IFN-y+ e TNF+ foram detectadas após estímulo com CpG. 3) As células Th22/Tc22 nos níveis basais e após estímulo com SEB se mostraram aumentadas. As células Th17 não mostraram diferenças entre os grupos. 4) A frequência das células T CD4+ e CD8+ reg totais (CD25+Foxp3+CD127low/-) está elevada no LP. Quanto aos perfis de maturação, há aumento na frequência de células TCD4+ de memória efetora enquanto que para as células T CD8+ há predomínio das células de memória central. Quanto aos subtipos, há aumento nas células T CD4+ regs periféricas (pT reg). CONCLUSÕES: O estado de ativação das mDCs após ativação das vias de TLRs 4 e 7/8 pode influenciar na geração de resposta T efetoras no LP. O perfil de resposta monofuncional e polifuncional aos estímulos TLRs reflete a ativação destas células no sangue periférico. Além disso, o aumento de Th22/Tc22 e das células T regs indicam uma relação entre regulação e células efetoras no sangue periférico evidenciando que existem alterações extracutâneas no LP
Resumo:
BACKGROUND Intravenous immunoglobulin (IVIG) proved to be an efficient anti-inflammatory treatment for a growing number of neuroinflammatory diseases and protects against the development of experimental autoimmune encephalomyelitis (EAE), a widely used animal model for multiple sclerosis (MS). METHODS The clinical efficacy of IVIG and IVIG-derived F(ab')2 fragments, generated using the streptococcal cysteine proteinase Ide-S, was evaluated in EAE induced by active immunization and by adoptive transfer of myelin-specific T cells. Frequency, phenotype, and functional characteristics of T cell subsets and myeloid cells were determined by flow cytometry. Antibody binding to microbial antigen and cytokine production by innate immune cells was assessed by ELISA. RESULTS We report that the protective effect of IVIG is lost in the adoptive transfer model of EAE and requires prophylactic administration during disease induction. IVIG-derived Fc fragments are not required for protection against EAE, since administration of F(ab')2 fragments fully recapitulated the clinical efficacy of IVIG. F(ab')2-treated mice showed a substantial decrease in splenic effector T cell expansion and cytokine production (GM-CSF, IFN-γ, IL-17A) 9 days after immunization. Inhibition of effector T cell responses was not associated with an increase in total numbers of Tregs but with decreased activation of innate myeloid cells such as neutrophils, monocytes, and dendritic cells. Therapeutically effective IVIG-derived F(ab')2 fragments inhibited adjuvant-induced innate immune cell activation as determined by IL-12/23 p40 production and recognized mycobacterial antigens contained in Freund's complete adjuvant which is required for induction of active EAE. CONCLUSIONS Our data indicate that F(ab')2-mediated neutralization of adjuvant contributes to the therapeutic efficacy of anti-inflammatory IgG. These findings might partly explain the discrepancy of IVIG efficacy in EAE and MS.
Resumo:
Previous cancer vaccination trials often aimed to activate CD8(+) cytotoxic T-cell (CTL) responses with short (8-10mer) peptides and targeted CD4(+) helper T cells (TH) with HLA class II-binding longer peptides (12-16 mer) that were derived from tumor antigens. Accordingly, a study of immunomonitoring focused on the detection of CTL responses to the short, and TH responses to the long, peptides. The possible induction of concurrent TH responses to short peptides was widely neglected. In a recent phase I vaccination trial, 53 patients with different solid cancers were vaccinated with EMD640744, a cocktail of five survivin-derived short (9- or 10-mer) peptides in Montanide ISA 51VG. We monitored 49 patients and found strong CD8(+) T-cell responses in 63% of the patients. In addition, we unexpectedly found CD4(+) TH cell responses against at least two of the five short peptides in 61% (23/38) of the patients analyzed. The two peptides were recognized by HLA-DP4- and HLA-DR-restricted TH1 cells. Some short peptide-reactive (sp)CD4 T cells showed high functional avidity. Here, we show that a short peptide vaccine is able to activate a specific CD4(+) T-cell repertoire in many patients, facilitating a strong combined CD4(+)/CD8(+) T-cell response. Cancer Immunol Res; 4(1); 18-25. ©2015 AACR.
Resumo:
Although the importance of CD4(+) T cell responses to human cytonnegalovirus (HCMV) has recently been recognized in transplant and immunosuppressed patients, the precise specificity and nature of this response has remained largely unresolved. In the present study we have isolated CD4(+) CTL which recognize epitopes from HCMV glycoproteins gB and gH in association with two different HLA-DR antigens, DRA1*0101/DRB1*0701 (DR7) and DRA1*0101/DRB1*1101 (DR11). Comparison of amino acid sequences of HICMV isolates revealed that the gB and gH epitope sequences recognized by human CD4(+) T cells were not only conserved in clinical isolates from HCMV but also in CMV isolates from higher primates (chimpanzee, rhesus and baboon). Interestingly, these epitope sequences from chimpanzee, rhesus and baboon CMV are efficiently recognized by human CD4(+) CTL. More importantly, we show that gB-specific T cells from humans can also efficiently lyse pepticle-sensitized Patr-DR7(+) cells from chimpanzees. These findings suggest that conserved gB and gH epitopes should be considered while designing a prophylactic vaccine against HCMV. In addition, they also provide a functional basis for the conservation of MHC class 11 lineages between humans and Old World primates and open the possibility for the use of such primate models in vaccine development against HCMV.
Resumo:
Traditional vaccines consisting of whole attenuated micro-organisms. or microbial components administered with adjuvant, have been demonstrated as one of the most cost-effective and successful public health interventions. Their use in large scale immunisation programs has lead to the eradication of smallpox, reduced morbidity and mortality from many once common diseases, and reduced strain on health services. However, problems associated with these vaccines including risk of infection. adverse effects, and the requirement for refrigerated transport and storage have led to the investigation of alternative vaccine technologies. Peptide vaccines, consisting of either whole proteins or individual peptide epitopes, have attracted much interest, as they may be synthesised to high purity and induce highly specific immune responses. However, problems including difficulties stimulating long lasting immunity. and population MHC diversity necessitating multiepitopic vaccines and/or HLA tissue typing of patients complicate their development. Furthermore, toxic adjuvants are necessary to render them immunogenic. and as such non-toxic human-compatible adjuvants need to be developed. Lipidation has been demonstrated as a human compatible adjuvant for peptide vaccines. The lipid-core-peptide (LCP) system. incorporating lipid adjuvant, carrier, and peptide epitopes, exhibits promise as a lipid-based peptide vaccine adjuvant. The studies reviewed herein investigate the use of the LCP system for developing vaccines to protect against group A streptococcal (GAS) infection. The studies demonstrate that LCP-based GAS vaccines are capable of inducing high-titres of antigen specific IgG antibodies. Furthermore. mice immunised with an LCP-based GAS vaccine were protected against challenge with 8830 strain GAS.
Resumo:
Purpose: Persistent infection of cervical epithelium with high risk human papillomavirus (HPV) results in cervical intraepithelial neoplasia (CIN) from which squamous cancer of the cervix can arise. A study was undertaken to evaluate the safety and immunogenicity of an HPV 16 immunotherapeutic consisting of a mixture of HPV16 E6E7 fusion protein and ISCOMATRIX(TM) adjuvant (HPV16 Immunotherapeutic) for patients with CIN. Experimental design: Patients with CIN (n = 3 1) were recruited to a randomised blinded placebo controlled dose ranging study of immunotherapy. Results: Immunotherapy was well tolerated. Immunised subjects developed HPV16 E6E7 specific immunity. Antibody, delayed type hypersensitivity, in vitro cytokine release, and CD8 T cell responses to E6 and E7 proteins were each significantly greater in the immunised subjects than in placebo recipients. Loss of HPV16 DNA from the cervix was observed in some vaccine and placebo recipients. Conclusions : The HPV16 Immunotherapeutic comprising HPV16E6E7 fusion protein and ISCOMATRIX(TM) adjuvant is safe and induces vaccine antigen specific cell mediated immunity. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
RNA replicons offer a number of qualities which make them attractive as vaccination vectors. Both alphavirus and flavivirus replicon vaccines have been investigated in preclinical models yet there has been little direct comparison of the two vector systems. To determine whether differences in the biology of the two vectors influence immunogenicity, we compared two prototypic replicon vectors based on Semliki Forest virus (SFV) (alphavirus) and Kunjin virus (KUN) (flavivirus). Both vectors when delivered as naked RNAs elicited comparable CD8+ T cell responses but the SFV vectors elicited greater humoral responses to an encoded cytoplasmic antigen beta-galactosidase. Studies in MHC class II-deficient mice revealed that neither vector could overcome the dependence of CD4+ T cell help in the development of humoral and cellular responses following immunization. These studies indicate that the distinct biology of the two replicon systems may differentially impact the adaptive immune response and this may need to be considered when designing vaccination strategies. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Monocyte-derived dendritic cells (MoDCs) in clinical use for cancer immunotherapy are ideally generated in serum-free medium (SFM) with inclusion of a suitable maturation factor toward the end of the incubation period. Three good manfacturing practice (GMP) grade SFMs (AIM-V, X-VIVO 15, and X-VIVO 20) were compared with RPMI-1640, supplemented with 10% fetal bovine serum or 10% human serum. DCs generated for 7 days in SFM were less mature and secreted less interleukin (IL) 12p70 and IL-10 than DCs generated in 10% serum. DC yield was comparable in SFMs, and a greater proportion of cells was viable after maturation. Toll-like receptor (TLR) ligands were compared for their ability to induce cytokine secretion under serum-free conditions in the presence of interferon (IFN) gamma. With the exception of Poly I:C, TLR ligands stimulated high levels of IL-10 secretion. High levels of IL-12p70 were induced by two TLR4-mediated stimuli, lipopolysaccharide and Ribomunyl, a clinical-grade bacterial extract. When T-cell responses were compared in allogeneic mixed leukocyte reaction, DCs stimulated with Ribomunyl induced higher levels of IFN gamma than DCs stimulated with the cytokine cocktail: tumor necrosis factor-alpha, IL-1 beta, IL-6, and prostaglandin E-2. In the presence of IL-10 neutralizing antibodies, DC IL-12p70 production and T-cell IFN gamma were increased in vitro. Similarly, DCs stimulated with Ribomunyl, IFN gamma, and anti-IL-10 induced high levels of tetanus toxoid-specific T-cell proliferation and IFN gamma secretion. Thus, MoDCs generated ill SFM efficiently stimulate T-cell IFN gamma production after maturation in the presence of a clinical-grade TLR4 agonist and IL-10 neutralization.
Resumo:
The initiation of graft-vs-host disease (GVHD) after stem cell transplantation is dependent on direct Ag presentation by host APCs, whereas the effect of donor APC populations is unclear. We studied the role of indirect Ag presentation in allogenic T cell responses by adding populations of cytokine-expanded donor APC to hemopoietic grafts that would otherwise induce lethal GVHD. Progenipoietin-1 (a synthetic G-CSF/Flt-3 ligand molecule) and G-CSF expanded myeloid dendritic cells (DC), plasmacytoid DC, and a novel granulocyte-monocyte precursor population (GM) that differentiate into class II+,CD80/CD86(+),CD40(-) APC during GVHD. Whereas addition of plasmacytoid and myeloid donor DC augmented GVHD, GM cells promoted transplant tolerance by MHC class II-restricted generation of IL-10-secreting, Ag-specific regulatory T cells. Importantly, although GM cells abrogated GVHD, graft-vs-leukemia effects were preserved. Thus, a population of cytokine-expanded GM precursors function as regulatory APCs, suggesting that G-CSF derivatives may have application in disorders characterized by a loss of self-tolerance.
Resumo:
By most accounts the psychological stressor restraint produces a distinct pattern of neuronal activation in the brain. However, some evidence is incongruous with this pattern, leading us to propose that the restraint- induced pattern in the central nervous system might depend on the duration of restraint used. We therefore determined the pattern of neuronal activation ( as indicated by the presence of Fos protein) seen in the paraventricular nucleus (PVN), bed nucleus of the stria terminalis, amygdala, locus coeruleus, nucleus tractus solitarius (NTS), ventrolateral medulla (VLM) and thoracic spinal cord of the rat in response to 0, 15, 30 or 60 min periods of restraint. We found that although a number of cell groups displayed a linear increase in activity with increasing durations of restraint ( e. g. hypothalamic corticotrophin-releasing factor (CRF) cells, medial amygdala neurons and sympathetic preganglionic neurons of the thoracic spinal cord), a number of cell groups did not. For example, in the central amygdala restraint produced both a decrease in CRF cell activity and an increase in non-CRF cell activity. In the locus coeruleus, noradrenergic neurons did not display Fos in response to 15 min of restraint, but were significantly activated by 30 or 60 min restraint. After 30 or 60 min restraint a greater degree of activation of more rostral A1 noradrenergic neurons was observed compared with the pattern of A1 noradrenergic neurons in response to 15 min restraint. The results of this study demonstrate that restraint stress duration determines the amount and the pattern of neuronal activation seen in response to this psychological stressor.
Resumo:
Group A streptococcus (GAS) is responsible for causing many clinical complications including the relatively benign streptococcal pharyngitis and impetigo. However. if left untreated. these conditions may lead to more severe diseases such as rheumatic fever (RF) and rheumatic heart disease (RHD). These diseases exhibit high morbidity and mortality, Particularly in developing countries and in indigenous populations of affluent countries. Only ever occur following GAS infection, a vaccine offers Promise for their Prevention. As stich, we have investigated the Use of the lipid-core peptide (LCP) system for the development of multi-valent Prophylactic GAS vaccines. The current study has investigated the capacity of this system to adjuvant LIP to four different GAS peptide epitopes. Presented are the synthesis and immunological assessment of tetra-valent and tri-valent GAS LCP systems. We demonstrated their capacity to elicit systemic IgG antibody responses in B10.BR mice to all GAS peptide epitopes. The data also showed that the LCP systems Were self-adjuvanting. These findings are particularly encouraging for the development of multi-valent LCP-based GAS vaccines.
Resumo:
Traditional vaccines consisting of whole attenuated microorganisms, killed microorganisms, or microbial components, administered with an adjuvant (e.g. alum), have been proved to be extremely successful. However, to develop new vaccines, or to improve upon current vaccines, new vaccine development techniques are required. Peptide vaccines offer the capacity to administer only the minimal microbial components necessary to elicit appropriate immune responses, minimizing the risk of vaccination associated adverse effects, and focusing the immune response toward important antigens. Peptide vaccines, however, are generally poorly immunogenic, necessitating administration with powerful, and potentially toxic adjuvants. The attachment of lipids to peptide antigens has been demonstrated as a potentially safe method for adjuvanting peptide epitopes. The lipid core peptide (LCP) system, which incorporates a lipidic adjuvant, carrier, and peptide epitopes into a single molecular entity, has been demonstrated to boost immunogenicity of attached peptide epitopes without the need for additional adjuvants. The synthesis of LCP systems normally yields a product that cannot be purified to homogeneity. The current study describes the development of methods for the synthesis of highly pure LCP analogs using native chemical ligation. Because of the highly lipophilic nature of the LCP lipid adjuvant, difficulties (e.g. poor solubility) were experienced with the ligation reactions. The addition of organic solvents to the ligation buffer solubilized lipidic species, but did not result in successful ligation reactions. In comparison, the addition of approximately 1% (w/v) sodium dodecyl sulfate (SDS) proved successful, enabling the synthesis of two highly pure, tri-epitopic Streptococcus pyogenes LCP analogs. Subcutaneous immunization of B10.BR (H-2(k)) mice with one of these vaccines, without the addition of any adjuvant, elicited high levels of systemic IgG antibodies against each of the incorporated peptides. Copyright (c) 2006 European Peptide Society and John Wiley & Sons, Ltd.