945 resultados para Surface wave methods
Resumo:
Background: the aim of the present study was to compare the effects of Er:YAG and diode laser treatments of the root surface on intrapulpal temperature after scaling and root planing with hand instruments.Methods: Fifteen extracted single-rooted teeth were scaled and root planed with hand instruments. The teeth were divided into 3 groups of 5 each and irradiated on their buccal and lingual surfaces: group A: Er:YAG laser, 2.94 mum/100 mJ/10 Hz/ 30 seconds; group B: diode laser, 810 nm/1.0 W/0.05 ms/30 seconds; group C: diode laser, 810 nm/1.4 W/0.05 ms/30 seconds. The temperature was monitored by means of a type T thermocouple (copper-constantan) positioned in the pulp chamber to assess pulpal temperature during and before irradiation. Afterwards, the specimens were longitudinally sectioned, and the buccal and lingual surfaces of each root were analyzed by scanning electron microscopy.Results: In the Er:YAG laser group, the thermal analysis revealed an average temperature of -2.2 +/- 1.5degreesC, while in the diode laser groups, temperatures were 1.6 +/- 0.8degreesC at 1.0 W and 3.3 +/- 1.0degreesC at 1.4 W. Electronic micrographs revealed that there were no significant morphological changes, such as charring, melting, or fusion, in any group, although the specimens were found to be more irregular in the Er:YAG laser group.Conclusions: the application of Er:YAG and diode lasers at the utilized parameters did not induce high pulpal temperatures. Root surface irregularities were more pronounced after irradiation with an Er:YAG laser than with a diode laser.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: Considering the potential of the association between laser ablation and smaller scale hydroxyapatite (HA) coatings to create a stable and bioactive surface on titanium dental implants, the aim of the present study was to determine, by the removal torque test, the effects of a surface treatment created by laser-ablation (Nd:YAG) and, later, thin deposition of HA particles by a chemical process, compared to implants with only laser-ablation and implants with machined surfaces.Materials and Methods: Forty-eight rabbits received I implant by tibia of the following surfaces: machined surface (MS), laser-modified surface (LMS), and biomimetic hydroxiapatite coated surface (HA). After 4, 8, and 12 weeks of healing, the removal torque was measured by a torque gauge. The surfaces studied were analyzed according to their topography, chemical composition, and roughness.Results: Average removal torque in each period was 23.28, 24.0, and 33.85 Ncm to MS, 33.0, 39.87, and 54.57 Ncm to LMS, and 55.42, 63.71 and 64.0 Ncm to HA. The difference was statistically significant (P < .05) between the LMS-MS and HA-MS surfaces in all periods of evaluation, and between LMS-HA to 4 and 8 weeks of healing. The surface characterization showed a deep, rough, and regular topography provided by the laser conditioning, that was followed by the HA coating.Conclusions: Based on these results, it was possible to conclude that the implants with laser surface modification associated with HA biomimetic coating can shorten the implant healing period by the increase of bone implant interaction during the first 2 months after implant placement. (C) 2009 American Association of Oral and Maxillofacial Surgeons J Oral Maxillofac Surg 67:1706-1715, 2009
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: Different surface treatments have been developed in attempts to prevent the loosening of abutment screws. The aim of the current study was to compare the effectiveness of titanium alloy screws with tungsten-doped diamond-like carbon (W-DLC) coating and uncoated screws in providing stability to zirconia (ZrO2) ceramic abutments after cyclic loading. Materials and Methods: Twenty prefabricated ZrO2 ceramic abutments on their respective external-hex implants were divided into two groups of equal size according to the type of screw used: uncoated titanium alloy screw (Ti) or titanium alloy screw with W-DLC coating (W-DLC/Ti). The removal torque value (preload) of the abutment screw was measured before and after loading. Cyclic loading between 11 and 211 N was applied at an angle of 30 degrees to the long axis of the implants at a frequency of 15 Hz. A target of 0.5 x 10(6) cycles was defined. Group means were calculated and compared using analysis of variance and the F test (alpha=.05). Results: Before cyclic loading, the preload for Ti screws was significantly higher than that for W-DLC/Ti screws (P=.021). After cyclic loading, there was no significant difference between them (P=.499). Conclusions: Under the studied conditions, it can be concluded that, after cyclic loading, both abutment screws presented a significant reduction in the mean retained preload and similar effectiveness in maintaining preload. INT J ORAL MAXILLOFAC IMPLANTS 2012;27:1061-1067
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Statement of problem. Although titanium presents attractive physical and mechanical properties, there is a need for improving the bond at the titanium/luting cement interface for the longevity of metal ceramic restorations.Purpose. The purpose of this study was to evaluate the effect of surface treatments on the shear bond strength (SBS) of resin-modified glass ionomer and resin cements to commercially pure titanium (CP Ti).Material and methods. Two hundred and forty CP Ti cast disks (9.0 x 3.0 mm) were divided into 8 surface treatment groups (n=30): 1) 50 mu m Al2O3 particles; 2) 120 mu m Al2O3 particles; 3) 250 mu m Al2O3 particles; 4) 50 mu m Al2O3 particles + silane (RelyX Ceramic Primer); 5) 120 mu m Al2O3 particles + silane; 6) 250 mu m Al2O3 particles + silane; 7) 30 mu m silica-modified Al2O3 particles (Cojet Sand) + silane; and 8) 120 mu m Al2O3 particles, followed by 110 mu m silica-modified Al2O3 particles (Rocatec). The luting cements 1) RelyX Luting 2; 2) RelyX ARC; or 3) RelyX U100 were applied to the treated CP Ti surfaces (n=10). Shear bond strength (SBS) was tested after thermal cycling (5000 cycles, 5 degrees C to 55 degrees C). Data were analyzed by 2-way analysis of variance (ANOVA) and the Tukey HSD post hoc test (alpha=.05). Failure mode was determined with a stereomicroscope (x20).Results. The surface treatments, cements, and their interaction significantly affected the SBS (P<.001). RelyX Luting 2 and RelyX U100 exhibited similar behavior for all surface treatments. For both cements, only the group abraded with 50 mu m Al2O3 particles had lower SBS than the other groups (P<.05). For RelyX ARC, regardless of silane application, abrasion with 50 mu m Al2O3 particles resulted in significantly lower SBS than abrasion with 120 mu m and 250 mu m particles, which exhibited statistically similar SBS values to each other. Rocatec + silane promoted the highest SBS for RelyX ARC. RelyX U100 presented the highest SBS mean values (P<.001). All groups showed a predominance of adhesive failure mode.Conclusions. The adhesive capability of RelyX Luting 2 and RelyX U100 on the SBS was decisive, while for RelyX ARC, mechanical and chemical factors were more influential. (J Prosthet Dent 2012;108:370-376)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: This study evaluated the effect of disinfection by immersion and microwave irradiation on the roughness of one denture base resin (Lucitone-L) and five relining materials, three hard (Tokuyama Rebase II-TR, New Truliner-NT, Ufigel Hard-UH) and two resilient (Trusoft-T, Sofreliner-S).Methods: Fifty specimens were made and divided into groups: CL2 specimens were brushed with 4% chlorhexidine (1 min), immersed in the same solution (10 min) and immersed in water (3 min); MW2 specimens were immersed in water and microwave irradiated (650W; 6 min); CL2 and MW2 specimens were disinfected twice; CL7 and MW7 specimens were submitted to seven cycles using chlorhexidine or microwave irradiation, respectively; W specimens were not disinfected and remained in water (37 degrees C; 7 days).Results: Results were statistically analysed (p = 0.05) and revealed that, at baseline, the highest mean value was observed for T (p < 0.001). Material NT showed increase in roughness after the first (p = 0.003), second (p = 0.001), seventh (p = 0.000) cycles of microwave disinfection and after 7 days of immersion in water (p = 0.033).Conclusions: Resilient liner S presented significant increase in roughness after the second cycle of disinfection with chlorhexidine (p = 0.003). Material T exhibited significantly decreased roughness in group W (p = 0.010), while microwaving produced severe alterations on its surface.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective: The purpose of this study was to evaluate the flexural strength of repairs made with autopolymerising acrylic resin after different treatments of joint surfaces.Material and Methods: Fifty rectangular specimens were made with heat-polymerised acrylic resin and 40 were repaired with autopolymerising acrylic resin following joint surface treatments: group 1 (intact specimens), group 2 (chemical treatment: wetting with methyl-methacrylate for 180 s), group 3 (abraded with silicon carbide paper), group 4 (abraded and wetting with methyl-methacrylate for 180 s) and group 5 (without surface treatment). The flexural strength was measured by a three-point bending test using a universal testing machine with a 100 Kgf load cell in the centre of repair at 5 mm/min cross-head speed. All data were analysed using one-way ANOVA and Tukey HSD test for multiple comparisons (p < 0.05).Results: Among repaired specimens, groups 2 and 4 had 66.53 +/- 3.4 and 69.38 +/- 1.8 MPa mean values and were similar. These groups had superior flexural strength than groups 3 and 5 that were similar and had 54.11 +/- 3.4 and 51.24 +/- 2.8 MPa mean values, respectively. Group 1 had a mean value of 108.30 +/- 2.8 MPa being the highest result.Conclusion: It can be concluded that the treatment of the joint surfaces with methyl-methacrylate increases the flexural strength of denture base repairs, although the strength is still lower than that observed for the intact denture base resin. Abrasion with sandpaper was not able to influence the flexural strength of repaired denture bases.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)