862 resultados para Supervised Classification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective Quantitative analysis of chest radiographs of patients with and without chronic obstructive pulmonary disease (COPD) determining if the data obtained from such radiographic images could classify such individuals according to the presence or absence of disease. Materials and Methods For such a purpose, three groups of chest radiographic images were utilized, namely: group 1, including 25 individuals with COPD; group 2, including 27 individuals without COPD; and group 3 (utilized for the reclassification /validation of the analysis), including 15 individuals with COPD. The COPD classification was based on spirometry. The variables normalized by retrosternal height were the following: pulmonary width (LARGP); levels of right (ALBDIR) and left (ALBESQ) diaphragmatic eventration; costophrenic angle (ANGCF); and right (DISDIR) and left (DISESQ) intercostal distances. Results As the radiographic images of patients with and without COPD were compared, statistically significant differences were observed between the two groups on the variables related to the diaphragm. In the COPD reclassification the following variables presented the highest indices of correct classification: ANGCF (80%), ALBDIR (73.3%), ALBESQ (86.7%). Conclusion The radiographic assessment of the chest demonstrated that the variables related to the diaphragm allow a better differentiation between individuals with and without COPD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The World Health Organization (WHO) plans to submit the 11th revision of the International Classification of Diseases (ICD) to the World Health Assembly in 2018. The WHO is working toward a revised classification system that has an enhanced ability to capture health concepts in a manner that reflects current scientific evidence and that is compatible with contemporary information systems. In this paper, we present recommendations made to the WHO by the ICD revision's Quality and Safety Topic Advisory Group (Q&S TAG) for a new conceptual approach to capturing healthcare-related harms and injuries in ICD-coded data. The Q&S TAG has grouped causes of healthcare-related harm and injuries into four categories that relate to the source of the event: (a) medications and substances, (b) procedures, (c) devices and (d) other aspects of care. Under the proposed multiple coding approach, one of these sources of harm must be coded as part of a cluster of three codes to depict, respectively, a healthcare activity as a 'source' of harm, a 'mode or mechanism' of harm and a consequence of the event summarized by these codes (i.e. injury or harm). Use of this framework depends on the implementation of a new and potentially powerful code-clustering mechanism in ICD-11. This new framework for coding healthcare-related harm has great potential to improve the clinical detail of adverse event descriptions, and the overall quality of coded health data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Renal cystic lesions are usually diagnosed in the radiologists' practice and therefore their characterization is crucial to determine the clinical approach to be adopted and prognosis. The Bosniak classification based on computed tomography findings has allowed for standardization and categorization of lesions in increasing order of malignancy (I, II, IIF, III and IV) in a simple and accurate way. The present iconographic essay developed with multidetector computed tomography images of selected cases from the archives of the authors' institution, is aimed at describing imaging findings that can help in the diagnosis of renal cysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AbstractRenal cell carcinoma (RCC) is the seventh most common histological type of cancer in the Western world and has shown a sustained increase in its prevalence. The histological classification of RCCs is of utmost importance, considering the significant prognostic and therapeutic implications of its histological subtypes. Imaging methods play an outstanding role in the diagnosis, staging and follow-up of RCC. Clear cell, papillary and chromophobe are the most common histological subtypes of RCC, and their preoperative radiological characterization, either followed or not by confirmatory percutaneous biopsy, may be particularly useful in cases of poor surgical condition, metastatic disease, central mass in a solitary kidney, and in patients eligible for molecular targeted therapy. New strategies recently developed for treating renal cancer, such as cryo and radiofrequency ablation, molecularly targeted therapy and active surveillance also require appropriate preoperative characterization of renal masses. Less common histological types, although sharing nonspecific imaging features, may be suspected on the basis of clinical and epidemiological data. The present study is aimed at reviewing the main clinical and imaging findings of histological RCC subtypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Objective: To assess the cutoff values established by ROC curves to classify18F-NaF uptake as normal or malignant. Materials and Methods: PET/CT images were acquired 1 hour after administration of 185 MBq of18F-NaF. Volumes of interest (VOIs) were drawn on three regions of the skeleton as follows: proximal right humerus diaphysis (HD), proximal right femoral diaphysis (FD) and first vertebral body (VB1), in a total of 254 patients, totalling 762 VOIs. The uptake in the VOIs was classified as normal or malignant on the basis of the radiopharmaceutical distribution pattern and of the CT images. A total of 675 volumes were classified as normal and 52 were classified as malignant. Thirty-five VOIs classified as indeterminate or nonmalignant lesions were excluded from analysis. The standardized uptake value (SUV) measured on the VOIs were plotted on an ROC curve for each one of the three regions. The area under the ROC (AUC) as well as the best cutoff SUVs to classify the VOIs were calculated. The best cutoff values were established as the ones with higher result of the sum of sensitivity and specificity. Results: The AUCs were 0.933, 0.889 and 0.975 for UD, FD and VB1, respectively. The best SUV cutoffs were 9.0 (sensitivity: 73%; specificity: 99%), 8.4 (sensitivity: 79%; specificity: 94%) and 21.0 (sensitivity: 93%; specificity: 95%) for UD, FD and VB1, respectively. Conclusion: The best cutoff value varies according to bone region of analysis and it is not possible to establish one value for the whole body.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a new supervised linearfeature extraction technique for multiclass classification problemsthat is specially suited to the nearest neighbor classifier (NN).The problem of finding the optimal linear projection matrix isdefined as a classification problem and the Adaboost algorithmis used to compute it in an iterative way. This strategy allowsthe introduction of a multitask learning (MTL) criterion in themethod and results in a solution that makes no assumptions aboutthe data distribution and that is specially appropriated to solvethe small sample size problem. The performance of the methodis illustrated by an application to the face recognition problem.The experiments show that the representation obtained followingthe multitask approach improves the classic feature extractionalgorithms when using the NN classifier, especially when we havea few examples from each class

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in the angle of illumination incident upon a 3D surface texture can significantly alter its appearance, implying variations in the image texture. These texture variations produce displacements of class members in the feature space, increasing the failure rates of texture classifiers. To avoid this problem, a model-based texture recognition system which classifies textures seen from different distances and under different illumination directions is presented in this paper. The system works on the basis of a surface model obtained by means of 4-source colour photometric stereo, used to generate 2D image textures under different illumination directions. The recognition system combines coocurrence matrices for feature extraction with a Nearest Neighbour classifier. Moreover, the recognition allows one to guess the approximate direction of the illumination used to capture the test image

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new approach to mammographic mass detection is presented in this paper. Although different algorithms have been proposed for such a task, most of them are application dependent. In contrast, our approach makes use of a kindred topic in computer vision adapted to our particular problem. In this sense, we translate the eigenfaces approach for face detection/classification problems to a mass detection. Two different databases were used to show the robustness of the approach. The first one consisted on a set of 160 regions of interest (RoIs) extracted from the MIAS database, being 40 of them with confirmed masses and the rest normal tissue. The second set of RoIs was extracted from the DDSM database, and contained 196 RoIs containing masses and 392 with normal, but suspicious regions. Initial results demonstrate the feasibility of using such approach with performances comparable to other algorithms, with the advantage of being a more general, simple and cost-effective approach

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a probabilistic object classifier for outdoor scene analysis as a first step in solving the problem of scene context generation. The method begins with a top-down control, which uses the previously learned models (appearance and absolute location) to obtain an initial pixel-level classification. This information provides us the core of objects, which is used to acquire a more accurate object model. Therefore, their growing by specific active regions allows us to obtain an accurate recognition of known regions. Next, a stage of general segmentation provides the segmentation of unknown regions by a bottom-strategy. Finally, the last stage tries to perform a region fusion of known and unknown segmented objects. The result is both a segmentation of the image and a recognition of each segment as a given object class or as an unknown segmented object. Furthermore, experimental results are shown and evaluated to prove the validity of our proposal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Learning of preference relations has recently received significant attention in machine learning community. It is closely related to the classification and regression analysis and can be reduced to these tasks. However, preference learning involves prediction of ordering of the data points rather than prediction of a single numerical value as in case of regression or a class label as in case of classification. Therefore, studying preference relations within a separate framework facilitates not only better theoretical understanding of the problem, but also motivates development of the efficient algorithms for the task. Preference learning has many applications in domains such as information retrieval, bioinformatics, natural language processing, etc. For example, algorithms that learn to rank are frequently used in search engines for ordering documents retrieved by the query. Preference learning methods have been also applied to collaborative filtering problems for predicting individual customer choices from the vast amount of user generated feedback. In this thesis we propose several algorithms for learning preference relations. These algorithms stem from well founded and robust class of regularized least-squares methods and have many attractive computational properties. In order to improve the performance of our methods, we introduce several non-linear kernel functions. Thus, contribution of this thesis is twofold: kernel functions for structured data that are used to take advantage of various non-vectorial data representations and the preference learning algorithms that are suitable for different tasks, namely efficient learning of preference relations, learning with large amount of training data, and semi-supervised preference learning. Proposed kernel-based algorithms and kernels are applied to the parse ranking task in natural language processing, document ranking in information retrieval, and remote homology detection in bioinformatics domain. Training of kernel-based ranking algorithms can be infeasible when the size of the training set is large. This problem is addressed by proposing a preference learning algorithm whose computation complexity scales linearly with the number of training data points. We also introduce sparse approximation of the algorithm that can be efficiently trained with large amount of data. For situations when small amount of labeled data but a large amount of unlabeled data is available, we propose a co-regularized preference learning algorithm. To conclude, the methods presented in this thesis address not only the problem of the efficient training of the algorithms but also fast regularization parameter selection, multiple output prediction, and cross-validation. Furthermore, proposed algorithms lead to notably better performance in many preference learning tasks considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reviews almost four decades of contributions on the subject of supervised regionalization methods. These methods aggregate a set of areas into a predefined number of spatially contiguous regions while optimizing certain aggregation criteria. The authors present a taxonomic scheme that classifies a wide range of regionalization methods into eight groups, based on the strategy applied for satisfying the spatial contiguity constraint. The paper concludes by providing a qualitative comparison of these groups in terms of a set of certain characteristics, and by suggesting future lines of research for extending and improving these methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reviews almost four decades of contributions on the subject of supervised regionalization methods. These methods aggregate a set of areas into a predefined number of spatially contiguous regions while optimizing certain aggregation criteria. The authors present a taxonomic scheme that classifies a wide range of regionalization methods into eight groups, based on the strategy applied for satisfying the spatial contiguity constraint. The paper concludes by providing a qualitative comparison of these groups in terms of a set of certain characteristics, and by suggesting future lines of research for extending and improving these methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we study the classification of forest types using mathematics based image analysis on satellite data. We are interested in improving classification of forest segments when a combination of information from two or more different satellites is used. The experimental part is based on real satellite data originating from Canada. This thesis gives summary of the mathematics basics of the image analysis and supervised learning , methods that are used in the classification algorithm. Three data sets and four feature sets were investigated in this thesis. The considered feature sets were 1) histograms (quantiles) 2) variance 3) skewness and 4) kurtosis. Good overall performances were achieved when a combination of ASTERBAND and RADARSAT2 data sets was used.