953 resultados para Sulfate Homeostasis
Essential role for mammalian copper transporter Ctr1 in copper homeostasis and embryonic development
Resumo:
The trace metal copper (Cu) plays an essential role in biology as a cofactor for many enzymes that include Cu, Zn superoxide dismutase, cytochrome oxidase, ceruloplasmin, lysyl oxidase, and dopamine β-hydroxylase. Consequently, Cu transport at the cell surface and the delivery of Cu to intracellular compartments are critical events for a wide variety of biological processes. The components that orchestrate intracellular Cu trafficking and their roles in Cu homeostasis have been elucidated by the studies of model microorganisms and by the characterizations of molecular basis of Cu-related genetic diseases, including Menkes disease and Wilson disease. However, little is known about the mechanisms for Cu uptake at the plasma membrane and the consequences of defects in this process in mammals. Here, we show that the mouse Ctr1 gene encodes a component of the Cu transport machinery and that mice heterozygous for Ctr1 exhibit tissue-specific defects in copper accumulation and in the activities of copper-dependent enzymes. Mice completely deficient for Ctr1 exhibit profound growth and developmental defects and die in utero in mid-gestation. These results demonstrate a crucial role for Cu acquisition through the Ctr1 transporter for mammalian Cu homeostasis and embryonic development.
Resumo:
Copper plays a fundamental role in the biochemistry of all aerobic organisms. The delivery of this metal to specific intracellular targets is mediated by metallochaperones. To elucidate the role of the metallochaperone Atox1, we analyzed mice with a disruption of the Atox1 locus. Atox1−/− mice failed to thrive immediately after birth, with 45% of pups dying before weaning. Surviving animals exhibited growth failure, skin laxity, hypopigmentation, and seizures because of perinatal copper deficiency. Maternal Atox1 deficiency markedly increased the severity of Atox1−/− phenotype, resulting in increased perinatal mortality as well as severe growth retardation and congenital malformations among surviving Atox1−/− progeny. Furthermore, Atox1-deficient cells accumulated high levels of intracellular copper, and metabolic studies indicated that this defect was because of impaired cellular copper efflux. Taken together, these data reveal a direct role for Atox1 in trafficking of intracellular copper to the secretory pathway of mammalian cells and demonstrate that this metallochaperone plays a critical role in perinatal copper homeostasis.
Resumo:
The tumor suppressors EXT1 and EXT2 are associated with hereditary multiple exostoses and encode bifunctional glycosyltransferases essential for chain polymerization of heparan sulfate (HS) and its analog, heparin (Hep). Three highly homologous EXT-like genes, EXTL1–EXTL3, have been cloned, and EXTL2 is an α1,4-GlcNAc transferase I, the key enzyme that initiates the HS/Hep synthesis. In the present study, truncated forms of EXTL1 and EXTL3, lacking the putative NH2-terminal transmembrane and cytoplasmic domains, were transiently expressed in COS-1 cells and found to harbor α-GlcNAc transferase activity. EXTL3 used not only N-acetylheparosan oligosaccharides that represent growing HS chains but also GlcAβ1–3Galβ1-O-C2H4NH-benzyloxycarbonyl (Cbz), a synthetic substrate for α-GlcNAc transferase I that determines and initiates HS/Hep synthesis. In contrast, EXTL1 used only the former acceptor. Neither EXTL1 nor EXTL3 showed any glucuronyltransferase activity as examined with N-acetylheparosan oligosaccharides. Heparitinase I digestion of each transferase-reaction product showed that GlcNAc had been transferred exclusively through an α1,4-configuration. Hence, EXTL3 most likely is involved in both chain initiation and elongation, whereas EXTL1 possibly is involved only in the chain elongation of HS and, maybe, Hep as well. Thus, their acceptor specificities of the five family members are overlapping but distinct from each other, except for EXT1 and EXT2 with the same specificity. It now has been clarified that all of the five cloned human EXT gene family proteins harbor glycosyltransferase activities, which probably contribute to the synthesis of HS and Hep.
Resumo:
A cDNA clone encoding a homolog of the yeast (Saccharomyces cerevisiae) gene Anti-oxidant 1 (ATX1) has been identified from Arabidopsis. This gene, referred to as Copper CHaperone (CCH), encodes a protein that is 36% identical to the amino acid sequence of ATX1 and has a 48-amino acid extension at the C-terminal end, which is absent from ATX1 homologs identified in animals. ATX1-deficient yeast (atx1) displayed a loss of high-affinity iron uptake. Expression of CCH in the atx1 strain restored high-affinity iron uptake, demonstrating that CCH is a functional homolog of ATX1. When overexpressed in yeast lacking the superoxide dismutase gene SOD1, both ATX1 and CCH protected the cell from the reactive oxygen toxicity that results from superoxide dismutase deficiency. CCH was unable to rescue the sod1 phenotype in the absence of copper, indicating that CCH function is copper dependent. In Arabidopsis CCH mRNA is present in the root, leaf, and inflorescence and is up-regulated 7-fold in leaves undergoing senescence. In plants treated with 800 nL/L ozone for 30 min, CCH mRNA levels increased by 30%. In excised leaves and whole plants treated with high levels of exogenous CuSO4, CCH mRNA levels decreased, indicating that CCH is regulated differently than characterized metallothionein proteins in Arabidopsis.
Resumo:
The decrease with age of the adrenal-secreted dehydroepiandrosterone sulfate (DHEAS) in serum has suggested that it may be causally related to longevity. For the PAQUID [People (Personnes) Aged (Agées) About What (Quid, in Latin)] cohort of elderly subjects, we have previously reported higher DHEAS in men than in women, a decrease with age and, among men, a negative correlation between the DHEAS level and mortality at 2 and 4 years. Here, with an 8-year followup in 290 subjects, we show a global decrease of 2.3% per year for men and 3.9% per year for women. However, in approximately 30% of cases, there was an increase of DHEAS. We observed no relationship between the evolution of DHEAS level and functional, psychological, and mental status, possibly because of selection by death. In women, no association was found between mortality and DHEAS level. In men, the relative risk (RR) of death was higher for the lowest levels of DHEAS (RR = 1.9, P = 0.007), with RR = 6.5, P = 0.003 for those under 70 years old, a result indicating heterogeneity of the population. There was an effect of subjective health on mortality that disappeared after adjustment of DHEAS levels, suggesting its relation with these DHEAS levels. Death RR was much higher in smokers with a low DHEAS level than in nonsmokers with high DHEAS (RR = 6.7, P = 0.001). We submit that the involvement of DHEAS is possibly different according to gender, that association between low DHEAS level and mortality only for men under 70 years old possibly reflects heterogeneity of the population, and that DHEAS level is a reliable predictor of death in male smokers.
Resumo:
Chlamydial attachment to columnar conjunctival or urogenital epithelial cells is an initial and critical step in the pathogenesis of chlamydial mucosal infections. The chlamydial major outer membrane protein (MOMP) has been implicated as a putative chlamydial cytoadhesin; however, direct evidence supporting this hypothesis has not been reported. The function of MOMP as a cytoadhesin was directly investigated by expressing the protein as a fusion with the Escherichia coli maltose binding protein (MBP-MOMP) and studying its interaction with human epithelial cells. The recombinant MBP-MOMP bound specifically to HeLa cells at 4 degrees C but was not internalized after shifting the temperature to 37 degrees C. The MBP-MOMP competitively inhibited the infectivity of viable chlamydiae for epithelial cells, indicating that the MOMP and intact chlamydiae bind the same host receptor. Heparan sulfate markedly reduced binding of the MBP-MOMP to cells, whereas chondroitin sulfate had no effect on binding. Enzymatic treatment of cells with heparitinase but not chondroitinase inhibited the binding of MBP-MOMP. These same treatments were also shown to reduce the infectivity of chlamydiae for epithelial cells. Mutant cell lines defective in heparan sulfate synthesis but not chondroitin sulfate synthesis showed a marked reduction in the binding of MBP-MOMP and were also less susceptible to infection by chlamydiae. Collectively, these findings provide strong evidence that the MOMP functions as a chlamydial cytoadhesin and that heparan sulfate proteoglycans are the host-cell receptors to which the MOMP binds.
Resumo:
Plant cells contain two major pools of K+, one in the vacuole and one in the cytosol. The behavior of K+ concentrations in these pools is fundamental to understanding the way this nutrient affects plant growth. Triple-barreled microelectrodes have been used to obtain the first fully quantitative measurements of the changes in K+ activity (aK) in the vacuole and cytosol of barley (Hordeum vulgare L.) root cells grown in different K+ concentrations. The electrodes incorporate a pH-selective barrel allowing each measurement to be assigned to either the cytosol or vacuole. The measurements revealed that vacuolar aK declined linearly with decreases in tissue K+ concentration, whereas cytosolic aK initially remained constant in both epidermal and cortical cells but then declined at different rates in each cell type. An unexpected finding was that cytoplasmic pH declined in parallel with cytosolic aK, but acidification of the cytosol with butyrate did not reveal any short-term link between these two parameters. These measurements show the very different responses of the vacuolar and cytosolic K+ pools to changes in K+ availability and also show that cytosolic K+ homeostasis differs quantitatively in different cell types. The data have been used in thermodynamic calculations to predict the need for, and likely mechanisms of, active K+ transport into the vacuole and cytosol. The direction of active K+ transport at the vacuolar membrane changes with tissue K+ status.
Resumo:
A human melanoma-associated chondroitin sulfate proteoglycan (MCSP), recognized by mAb 9.2.27, plays a role in stabilizing cell-substratum interactions during early events of melanoma cell spreading on endothelial basement membranes. We report here the molecular cloning and nucleotide sequencing of cDNA encoding the entire core protein of human MCSP and provide its deduced amino acid sequence. This core protein contains an open reading frame of 2322 aa, encompassing a large extracellular domain, a hydrophobic transmembrane region, and a relatively short cytoplasmic tail. Northern blot analysis indicated that MCSP cDNA probes detect a single 8.0-kb RNA species expressed in human melanoma cell lines. In situ hybridization experiments with a segment of the MCSP coding sequence localized MCSP mRNA in biopsies prepared from melanoma skin metastases. Multiple human Northern blots with an MCSP-specific probe revealed a strong hybridization signal only with melanoma cells and not with other human cancer cells or a variety of human fetal and adult tissues. These data indicate that MCSP represents an integral membrane chondroitin sulfate proteoglycan expressed by human malignant melanoma cells. The availability of cDNAs encoding MCSP should facilitate studies designed to establish correlations between structure and function of this molecule and help to establish its role in the progression of human malignant melanoma.
Resumo:
We have investigated whether side chain-hydroxylated cholesterol species are important for elimination of cholesterol from the brain. Plasma concentrations of 24-hydroxycholesterol (24-OH-Chol) in the internal jugular vein and the brachial artery in healthy volunteers were consistent with a net flux of this steroid from the brain into the circulation, corresponding to elimination of approximately 4 mg cholesterol during a 24-h period in adults. Results of experiments with rats exposed to 18O2 were also consistent with a flux of 24-OH-Chol from the brain into the circulation. No other oxysterol measured showed a similar behavior as 24-OH-Chol. These results and the finding that the concentration of 24-OH-Chol was 30- to 1500-fold higher in the brain than in any other organ except the adrenals indicate that the major part of 24-OH-Chol present in the circulation originates from the brain. Both the 24-OH-Chol present in the brain and in the circulation were the 24S-stereoisomer. In contrast to other oxysterols, levels of plasma 24-OH-Chol were found to be markedly dependent upon age. The ratio between 24-OH-Chol and cholesterol in plasma was approximately 5 times higher during the first decade of life than during the sixth decade. There was a high correlation between levels of 24-OH-Chol in plasma and cerebrospinal fluid. It is suggested that the flux of 24-OH-Chol from the brain is important for cholesterol homeostasis in this organ.
Resumo:
Kidney cortex is a main target for circulating vitamin B12 (cobalamin) in complex with transcobalamin (TC). Ligand blotting of rabbit kidney cortex with rabbit 125I-TC-B12 and human TC-57Co-B12 revealed an exclusive binding to megalin, a 600-kDa endocytic receptor present in renal proximal tubule epithelium and other absorptive epithelia. The binding was Ca2+ dependent and inhibited by receptor-associated protein (RAP). Surface plasmon resonance analysis demonstrated a high-affinity interaction between purified rabbit megalin and rabbit TC-B12 but no measurable affinity of the vitamin complex for the homologous alpha 2-macroglobulin receptor (alpha 2MR)/low density lipoprotein receptor related protein (LRP). 125I-TC-B12 was efficiently endocytosed in a RAP-inhibitable manner in megalin-expressing rat yolk sac carcinoma cells and in vivo microperfused rat proximal tubules. The radioactivity in the tubules localized to the endocytic compartments and a similar apical distribution in the proximal tubules was demonstrated after intravenous injection of 125I-TC-B12. The TC-B12 binding sites in the proximal tubule epithelium colocalized with megalin as shown by ligand binding to cryosections of rat kidney cortex, and the binding was inhibited by anti-megalin polyclonal antibody, EDTA, and RAP. These data show a novel nutritional dimension of megalin as a receptor involved in the cellular uptake of vitamin B12. The expression of megalin in absorptive epithelia in the kidney and other tissues including yolk sac and placenta suggests a role of the receptor in vitamin B12 homeostasis and fetal vitamin B12 supply.
Resumo:
In many plants, osmotic stress induces a rapid accumulation of proline through de novo synthesis from glutamate. This response is thought to play a pivotal role in osmotic stress tolerance [Kishor, P. B. K., Hong, Z., Miao, G.-H., Hu, C.-A. A. and Verma, D. P. S. (1995) Plant Physiol. 108, 1387-1394]. During recovery from osmotic stress, accumulated proline is rapidly oxidized to glutamate and the first step of this process is catalyzed by proline oxidase. We have isolated a full-length cDNA from Arabidopsis thaliana, At-POX, which maps to a single locus on chromosome 3 and that encodes a predicted polypeptide of 499 amino acids showing significant similarity with proline oxidase sequences from Drosophila and Saccharomyces cerevisiae (55.5% and 45.1%, respectively). The predicted location of the encoded polypeptide is the inner mitochondrial membrane. RNA gel blot analysis revealed that At-POX mRNA levels declined rapidly upon osmotic stress and this decline preceded proline accumulation. On the other hand, At-POX mRNA levels rapidly increased during recovery. Free proline, exogenously added to plants, was found to be an effective inducer of At-POX expression; indeed, At-POX was highly expressed in flowers and mature seeds where the proline level is higher relative to other organs of Arabidopsis. Our results indicate that stress- and developmentally derived signals interact to determine proline homeostasis in Arabidopsis.
Resumo:
We recently analyzed experimental studies of mammalian muscle glycogen synthesis using metabolic control analysis and concluded that glycogen synthase (GSase) does not control the glycogenic flux but rather adapts to the flux which is controlled bv the activity of the proximal glucose transport and hexokinase steps. This model did not provide a role for the well established relationship between GSase fractional activity, determined by covalent phosphorylation, and the rate of glycogen synthesis. Here we propose that the phosphorylation of GSase, which alters the sensitivity to allosteric activation by glucose 6-phosphate (G6P), is a mechanism for controlling the concentration of G6P instead of controlling the flux. When the muscle cell is exposed to conditions which favor glycogen synthesis such as high plasma insulin and glucose concentrations the fractional activity of GSase is increased in coordination with increases in the activity of glucose transport and hexokinase. This increase in GSase fractional activity helps to maintain G6P homeostasis by reducing the G6P concentration required to activate GSase allosterically to match the flux determined by the proximal reactions. This role for covalent phosphorylation also provides a novel solution to the Kacser and Acarenza paradigm which requires coordinated activity changes of the enzymes proximal and distal to a shared intermediate, to avoid unwanted flux changes.
Resumo:
Phospholipase D (PLD) associated with the rat kidney membrane was activated by guanine 5'-[gamma-thio]triphosphate and a cytosol fraction that contained ADP-ribosylation factor. When assayed by measuring the phosphatidyl transfer reaction to ethanol with exogenously added radioactive phosphatidylcholine as substrate, the PLD required a high concentration (1.6 M) of ammonium sulfate to exhibit high enzymatic activity. Other salts examined were far less effective or practically inactive, and this dramatic action of ammonium sulfate is not simply due to such high ionic strength. Addition of ATP but not of nonhydrolyzable ATP analogue adenosine 5'-[beta, gamma-imido]diphosphate further enhanced the PLD activation approximately equal to 2- to 3-fold. This enhancement by ATP needed cytosol, implying a role of protein phosphorylation. A survey of PLD activity in rat tissues revealed that, unlike in previous observations reported thus far, PLD was most abundant in membrane fractions of kidney, spleen, and liver in this order, and the enzymatic activity in brain and lung was low.
Resumo:
Immediate post-training, stereotactically guided, intraparenchymal administration of pregnenolone sulfate (PS) into the amygdala, septum, mammillary bodies, or caudate nucleus and of PS, dehydroepiandrosterone sulfate, and corticosterone into the hippocampus was performed in mice that had been weakly trained in a foot-shock active avoidance paradigm. Intrahippocampal injection of PS resulted in memory enhancement (ME) at a lower dose than was found with dehydroepiandrosterone sulfate and corticosterone. Intraamygdally administered PS was approximately 10(4) times more potent on a molar basis in producing ME than when PS was injected into the hippocampus and approximately 10(5) times more potent than when injected into the septum or mammillary bodies. ME did not occur on injection of PS into the caudate nucleus over the range of doses tested in the other brain structures. The finding that fewer than 150 molecules of PS significantly enhanced post-training memory processes when injected into the amygdala establishes PS as the most potent memory enhancer yet reported and the amygdala as the most sensitive brain region for ME by any substance yet tested.