941 resultados para Subgingival microbiota


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interaction between the gut microbiota and their mammalian host is known to have far-reaching consequences with respect to metabolism and health. We investigated the effects of eight days of oral antibiotic exposure (penicillin and streptomycin sulfate) on gut microbial composition and host metabolic phenotype in male Han-Wistar rats (n = 6) compared to matched controls. Early recolonization was assessed in a third group exposed to antibiotics for four days followed by four days recovery (n = 6). Fluorescence in situ hybridization analysis of the intestinal contents collected at eight days showed a significant reduction in all bacterial groups measured (control, 1010.7 cells/g feces; antibiotic-treated, 108.4). Bacterial suppression reduced the excretion of mammalian-microbial urinary cometabolites including hippurate, phenylpropionic acid, phenylacetylglycine and indoxyl-sulfate whereas taurine, glycine, citrate, 2-oxoglutarate, and fumarate excretion was elevated. While total bacterial counts remained notably lower in the recolonized animals (109.1 cells/g faeces) compared to the controls, two cage-dependent subgroups emerged with Lactobacillus/Enterococcus probe counts dominant in one subgroup. This dichotomous profile manifested in the metabolic phenotypes with subgroup differences in tricarboxylic acid cycle metabolites and indoxyl-sulfate excretion. Fecal short chain fatty acids were diminished in all treated animals. Antibiotic treatment induced a profound effect on the microbiome structure, which was reflected in the metabotype. Moreover, the recolonization process was sensitive to the microenvironment, which may impact on understanding downstream consequences of antibiotic consumption in human populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Population studies have shown a positive correlation between diets rich in whole grains and a reduced risk of developing metabolic diseases, like diabetes, cardiovascular disease, and certain cancers. However, little is known about the mechanisms of action, particularly the impact different fermentable components of whole grains have on the human intestinal microbiota. The modulation of microbial populations by whole grain wheat flakes and the effects of toasting on digestion and subsequent fermentation profile were evaluated. Raw, partially toasted, and toasted wheat flakes were digested using simulated gastric and small intestinal conditions and then fermented using 24-hour, pH-controlled, anaerobic batch cultures inoculated with human feces. Major bacterial groups and production of short-chain fatty acids were compared with those for the prebiotic oligofructose and weakly fermented cellulose. Within treatments, a significant increase (P<.05) in bifidobacteria numbers was observed upon fermentation of all test carbohydrates, with the exception of cellulose. Toasting appeared to have an effect on growth of lactobacilli as only fermentation of raw wheat flakes resulted in a significant increase in levels of this group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epidemiological studies have shown an inverse relationship between risk of CVD and intake of whole grain (WG)-rich food. Regular consumption of breakfast cereals can provide not only an increase in dietary WG but also improvements to cardiovascular health. Various mechanisms have been proposed, including prebiotic modulation of the colonic microbiota. In the present study, the prebiotic activity of a maize-derived WG cereal (WGM) was evaluated in a double-blind, placebo-controlled human feeding study (n 32). For a period of 21 d, healthy men and women, mean age 32 (sd 8) years and BMI 23·3 (sd 0·58) kg/m2, consumed either 48 g/d WG cereal (WGM) or 48 g placebo cereal (non-whole grain (NWG)) in a crossover fashion. Faecal samples were collected at five points during the study on days 0, 21, 42, 63 and 84 (representing at baseline, after both treatments and both wash-out periods). Faecal bacteriology was assessed using fluorescence in situ hybridisation with 16S rRNA oligonucleotide probes specific for Bacteroides spp., Bifidobacterium spp., Clostridium histolyticum/perfringens subgroup, Lactobacillus–Enterococcus subgroup and total bacteria. After 21 d consumption of WGM, mean group levels of faecal bifidobacteria increased significantly compared with the control cereal (P = 0·001). After a 3-week wash-out period, bifidobacterial levels returned to pre-intervention levels. No statistically significant changes were observed in serum lipids, glucose or measures of faecal output. In conclusion, this WG maize-enriched breakfast cereal mediated a bifidogenic modulation of the gut microbiota, indicating a possible prebiotic mode of action

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The gut microbiota enhances the host's metabolic capacity for processing nutrients and drugs and modulate the activities of multiple pathways in a variety of organ systems. We have probed the systemic metabolic adaptation to gut colonization for 20 days following exposure of axenic mice (n = 35) to a typical environmental microbial background using high-resolution (1)H nuclear magnetic resonance (NMR) spectroscopy to analyze urine, plasma, liver, kidney, and colon (5 time points) metabolic profiles. Acquisition of the gut microbiota was associated with rapid increase in body weight (4%) over the first 5 days of colonization with parallel changes in multiple pathways in all compartments analyzed. The colonization process stimulated glycogenesis in the liver prior to triggering increases in hepatic triglyceride synthesis. These changes were associated with modifications of hepatic Cyp8b1 expression and the subsequent alteration of bile acid metabolites, including taurocholate and tauromuricholate, which are essential regulators of lipid absorption. Expression and activity of major drug-metabolizing enzymes (Cyp3a11 and Cyp2c29) were also significantly stimulated. Remarkably, statistical modeling of the interactions between hepatic metabolic profiles and microbial composition analyzed by 16S rRNA gene pyrosequencing revealed strong associations of the Coriobacteriaceae family with both the hepatic triglyceride, glucose, and glycogen levels and the metabolism of xenobiotics. These data demonstrate the importance of microbial activity in metabolic phenotype development, indicating that microbiota manipulation is a useful tool for beneficially modulating xenobiotic metabolism and pharmacokinetics in personalized health care. IMPORTANCE: Gut bacteria have been associated with various essential biological functions in humans such as energy harvest and regulation of blood pressure. Furthermore, gut microbial colonization occurs after birth in parallel with other critical processes such as immune and cognitive development. Thus, it is essential to understand the bidirectional interaction between the host metabolism and its symbionts. Here, we describe the first evidence of an in vivo association between a family of bacteria and hepatic lipid metabolism. These results provide new insights into the fundamental mechanisms that regulate host-gut microbiota interactions and are thus of wide interest to microbiological, nutrition, metabolic, systems biology, and pharmaceutical research communities. This work will also contribute to developing novel strategies in the alteration of host-gut microbiota relationships which can in turn beneficially modulate the host metabolism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To characterize the impact of gut microbiota on host metabolism, we investigated the multicompartmental metabolic profiles of a conventional mouse strain (C3H/HeJ) (n=5) and its germ-free (GF) equivalent (n=5). We confirm that the microbiome strongly impacts on the metabolism of bile acids through the enterohepatic cycle and gut metabolism (higher levels of phosphocholine and glycine in GF liver and marked higher levels of bile acids in three gut compartments). Furthermore we demonstrate that (1) well-defined metabolic differences exist in all examined compartments between the metabotypes of GF and conventional mice: bacterial co-metabolic products such as hippurate (urine) and 5-aminovalerate (colon epithelium) were found at reduced concentrations, whereas raffinose was only detected in GF colonic profiles. (2) The microbiome also influences kidney homeostasis with elevated levels of key cell volume regulators (betaine, choline, myo-inositol and so on) observed in GF kidneys. (3) Gut microbiota modulate metabotype expression at both local (gut) and global (biofluids, kidney, liver) system levels and hence influence the responses to a variety of dietary modulation and drug exposures relevant to personalized health-care investigations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The time-course of metabolic events following response to a model hepatotoxin ethionine (800 mg/kg) was investigated over a 7 day period in rats using high-resolution (1)H NMR spectroscopic analysis of urine and multivariate statistics. Complementary information was obtained by multivariate analysis of (1)H MAS NMR spectra of intact liver and by conventional histopathology and clinical chemistry of blood plasma. (1)H MAS NMR spectra of liver showed toxin-induced lipidosis 24 h postdose consistent with the steatosis observed by histopathology, while hypertaurinuria was suggestive of liver injury. Early biochemical changes in urine included elevation of guanidinoacetate, suggesting impaired methylation reactions. Urinary increases in 5-oxoproline and glycine suggested disruption of the gamma-glutamyl cycle. Signs of ATP depletion together with impairment of the energy metabolism were given from the decreased levels in tricarboxylic acid cycle intermediates, the appearance of ketone bodies in urine, the depletion of hepatic glucose and glycogen, and also hypoglycemia. The observed increase in nicotinuric acid in urine could be an indication of an increase in NAD catabolism, a possible consequence of ATP depletion. Effects on the gut microbiota were suggested by the observed urinary reductions in the microbial metabolites 3-/4-hydroxyphenyl propionic acid, dimethylamine, and tryptamine. At later stages of toxicity, there was evidence of kidney damage, as indicated by the tubular damage observed by histopathology, supported by increased urinary excretion of lactic acid, amino acids, and glucose. These studies have given new insights into mechanisms of ethionine-induced toxicity and show the value of multisystem level data integration in the understanding of experimental models of toxicity or disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fermentation properties and prebiotic potential of novel low molecular weight polysaccharides (LMWPs) derived from agar and alginate bearing seaweeds was investigated. Ten LMWPs were supplemented to pH, temperature controlled anaerobic batch cultures inoculated with human feces from three donors, in triplicate. Microbiota changes were monitored using Fluorescent in-situ hybridization and short chain fatty acids, the fermentation end products were analysed using gas chromatography. Of the ten LMWPs tested, Gelidium seaweed CC2253 of molecular weight 64.64 KDa showed a significant increase in bifidobacterial populations from log(10) 8.06 at 0 h to log(10) 8.55 at 24 h (p = 0.018). For total bacterial populations, alginate powder CC2238 produced a significant increase from log(10) 9.01 at 0 h to log(10) 9.58 at 24 h (p = 0.032). No changes were observed in the other bacterial groups tested viz. Bacteroides, Lactobacilli/Enterococci, Eubacterium rectale/Clostridium coccoides and Clostridium histolyticum. The polysaccharides also showed significant increases in total SCFA production, particularly acetic and propionic acids, indicating that they were readily fermented. In conclusion, some LMWPs derived from agar and alginate bearing seaweeds were fermented by gut bacteria and exhibited potential to be used a novel source of prebiotics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To evaluate the fermentation properties of oligosaccharides derived from pectins and their parent polysaccharides, a 5-ml-working-volume, pH- and temperature-controlled fermentor was tested. Six pectic oligosaccharides representing specific substructures found within pectins were prepared. These consisted of oligogalacturonides (average degrees of polymerization [DP] of 5 and 9), methylated oligogalacturonides (average DP of 5), oligorhamnogalacturonides (average DP of 10 as a disaccharide unit of galacturonic acid and rhamnose), oligogalactosides (average DP of 5), and oligoarabinosides (average DP of 6). The influence of these carbohydrates on the human fecal microbiota was evaluated. Use of neutral sugar fractions resulted in an increase in Bifidobacterium populations and gave higher organic acid yields. The Bacteroides-Prevotella group significantly increased on all oligosaccharides except oligogalacturonides with an average DP of 5. The most selective substrates for bifidobacteria were arabinan, galactan, oligoarabinosides, and oligogalactosides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is well known that gut bacteria contribute significantly to the host homeostasis, providing a range of benefits such as immune protection and vitamin synthesis. They also supply the host with a considerable amount of nutrients, making this ecosystem an essential metabolic organ. In the context of increasing evidence of the link between the gut flora and the metabolic syndrome, understanding the metabolic interaction between the host and its gut microbiota is becoming an important challenge of modern biology.1-4 Colonization (also referred to as normalization process) designates the establishment of micro-organisms in a former germ-free animal. While it is a natural process occurring at birth, it is also used in adult germ-free animals to control the gut floral ecosystem and further determine its impact on the host metabolism. A common procedure to control the colonization process is to use the gavage method with a single or a mixture of micro-organisms. This method results in a very quick colonization and presents the disadvantage of being extremely stressful5. It is therefore useful to minimize the stress and to obtain a slower colonization process to observe gradually the impact of bacterial establishment on the host metabolism. In this manuscript, we describe a procedure to assess the modification of hepatic metabolism during a gradual colonization process using a non-destructive metabolic profiling technique. We propose to monitor gut microbial colonization by assessing the gut microbial metabolic activity reflected by the urinary excretion of microbial co-metabolites by 1H NMR-based metabolic profiling. This allows an appreciation of the stability of gut microbial activity beyond the stable establishment of the gut microbial ecosystem usually assessed by monitoring fecal bacteria by DGGE (denaturing gradient gel electrophoresis).6 The colonization takes place in a conventional open environment and is initiated by a dirty litter soiled by conventional animals, which will serve as controls. Rodents being coprophagous animals, this ensures a homogenous colonization as previously described.7 Hepatic metabolic profiling is measured directly from an intact liver biopsy using 1H High Resolution Magic Angle Spinning NMR spectroscopy. This semi-quantitative technique offers a quick way to assess, without damaging the cell structure, the major metabolites such as triglycerides, glucose and glycogen in order to further estimate the complex interaction between the colonization process and the hepatic metabolism7-10. This method can also be applied to any tissue biopsy11,12.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An obese-type human microbiota with an increased Firmicutes:Bacteroidetes ratio has been described that may link the gut microbiome with obesity and metabolic syndrome (MetS) development. Dietary fat and carbohydrate are modifiable risk factors that may impact on MetS by altering the human microbiome composition. We determined the effect of the amount and type of dietary fat and carbohydrate on faecal bacteria and short chain fatty acid (SCFA) concentrations in people ‘at risk’ of MetS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

First defined in the mid-1990s, prebiotics, which alter the composition and activity of gastrointestinal (GI) microbiota to improve health and well-being, have generated scientific and consumer interest and regulatory debate. The Life Sciences Research Organization, Inc. (LSRO) held a workshop, Prebiotics and the Health Benefits of Fiber: Future Research and Goals, in February 2011 to assess the current state of the science and the international regulatory environment for prebiotics, identify research gaps, and create a strategy for future research. A developing body of evidence supports a role for prebiotics in reducing the risk and severity of GI infection and inflammation, including diarrhea, inflammatory bowel disease, and ulcerative colitis as well as bowel function disorders, including irritable bowel syndrome. Prebiotics also increase the bioavailability and uptake of minerals and data suggest that they reduce the risk of obesity by promoting satiety and weight loss. Additional research is needed to define the relationship between the consumption of different prebiotics and improvement of human health. New information derived from the characterization of the composition and function of different prebiotics as well as the interactions among and between gut microbiota and the human host would improve our understanding of the effects of prebiotics on health and disease and could assist in surmounting regulatory issues related to prebiotic use.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background The process of weaning causes a major shift in intestinal microbiota and is a critical period for developing appropriate immune responses in young mammals.Objective To use a new systems approach to provide an overview of host metabolism and the developing immune system in response to nutritional intervention around the weaning period.Design Piglets (n=14) were weaned onto either an egg-based or soya-based diet at 3 weeks until 7 weeks, when all piglets were switched onto a fish-based diet. Half the animals on each weaning diet received Bifidobacterium lactis NCC2818 supplementation from weaning onwards. Immunoglobulin production from immunologically relevant intestinal sites was quantified and the urinary (1)H NMR metabolic profile was obtained from each animal at post mortem (11 weeks).Results Different weaning diets induced divergent and sustained shifts in the metabolic phenotype, which resulted in the alteration of urinary gut microbial co-metabolites, even after 4 weeks of dietary standardisation. B lactis NCC2818 supplementation affected the systemic metabolism of the different weaning diet groups over and above the effects of diet. Additionally, production of gut mucosa-associated IgA and IgM was found to depend upon the weaning diet and on B lactis NCC2818 supplementation.ConclusionThe correlation of urinary (1)H NMR metabolic profile with mucosal immunoglobulin production was demonstrated, thus confirming the value of this multi-platform approach in uncovering non-invasive biomarkers of immunity. This has clear potential for translation into human healthcare with the development of urine testing as a means of assessing mucosal immune status. This might lead to early diagnosis of intestinal dysbiosis and with subsequent intervention, arrest disease development. This system enhances our overall understanding of pathologies under supra-organismal control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Prebiotics are food ingredients, usually non-digestible oligosaccharides, that are selectively fermented by populations of beneficial gut bacteria. Endoxylanases, altering the naturally present cereal arabinoxylans, are commonly used in the bread industry to improve dough and bread characteristics. Recently, an in situ method has been developed to produce arabinoxylan-oligosaccharides (AXOS) at high levels in breads through the use of a thermophilic endoxylanase. AXOS have demonstrated potentially prebiotic properties in that they have been observed to lead to beneficial shifts in the microbiota in vitro and in murine, poultry and human studies. METHODS: A double-blind, placebo controlled human intervention study was undertaken with 40 healthy adult volunteers to assess the impact of consumption of breads with in situ produced AXOS (containing 2.2 g AXOS) compared to non-endoxylanase treated breads. Volatile fatty acid concentrations in faeces were assessed and fluorescence in situ hybridisation was used to assess changes in gut microbial groups. Secretory immunoglobulin A (sIgA) levels in saliva were also measured. RESULTS: Consumption of AXOS-enriched breads led to increased faecal butyrate and a trend for reduced iso-valerate and fatty acids associated with protein fermentation. Faecal levels of bifidobacteria increased following initial control breads and remained elevated throughout the study. Lactobacilli levels were elevated following both placebo and AXOS-breads. No changes in salivary secretory IgA levels were observed during the study. Furthermore, no adverse effects on gastrointestinal symptoms were reported during AXOS-bread intake. CONCLUSIONS: AXOS-breads led to a potentially beneficial shift in fermentation end products and are well tolerated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective To highlight the contribution of the gut microbiota to the modulation of host metabolism by dietary inulin-type fructans (ITF prebiotics) in obese women. Methods A double blind, placebo controlled, intervention study was performed with 30 obese women treated with ITF prebiotics (inulin/oligofructose 50/50 mix; n=15) or placebo (maltodextrin; n=15) for 3 months (16 g/day). Blood, faeces and urine sampling, oral glucose tolerance test, homeostasis model assessment and impedancemetry were performed before and after treatment. The gut microbial composition in faeces was analysed by phylogenetic microarray and qPCR analysis of 16S rDNA. Plasma and urine metabolic profiles were analysed by 1H-NMR spectroscopy. Results Treatment with ITF prebiotics, but not the placebo, led to an increase in Bifidobacterium and Faecalibacterium prausnitzii; both bacteria negatively correlated with serum lipopolysaccharide levels. ITF prebiotics also decreased Bacteroides intestinalis, Bacteroides vulgatus and Propionibacterium, an effect associated with a slight decrease in fat mass and with plasma lactate and phosphatidylcholine levels. No clear treatment clustering could be detected for gut microbial analysis or plasma and urine metabolomic profile analyses. However, ITF prebiotics led to subtle changes in the gut microbiota that may importantly impact on several key metabolites implicated in obesity and/or diabetes. Conclusions ITF prebiotics selectively changed the gut microbiota composition in obese women, leading to modest changes in host metabolism, as suggested by the correlation between some bacterial species and metabolic endotoxaemia or metabolomic signatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microbial metabolism of proteins and amino acids by human gut bacteria generates a variety of compounds including phenol, indole, and sulfur compounds and branched chain fatty acids, many of which have been shown to elicit a toxic effect on the lumen. Bacterial fermentation of amino acids and proteins occurs mainly in the distal colon, a site that is often fraught with symptoms from disorders including ulcerative colitis (UC) and colorectal cancer (CRC). In contrast to carbohydrate metabolism by the gut microbiota, proteolysis is less extensively researched. Many metabolites are low molecular weight, volatile compounds. This review will summarize the use of analytical methods to detect and identify compounds in order to elucidate the relationship between specific dietary proteinaceous substrates, their corresponding metabolites, and implications for gastrointestinal health.