911 resultados para Stylistics of expression
Resumo:
To gain insight into the regulation of expression of peroxisome proliferator-activated receptor (PPAR) isoforms, we have determined the structural organization of the mouse PPAR gamma (mPPAR gamma) gene. This gene extends > 105 kb and gives rise to two mRNAs (mPPAR gamma 1 and mPPAR gamma 2) that differ at their 5' ends. The mPPAR gamma 2 cDNA encodes an additional 30 amino acids N-terminal to the first ATG codon of mPPAR gamma 1 and reveals a different 5' untranslated sequence. We show that mPPAR gamma 1 mRNA is encoded by eight exons, whereas the mPPAR gamma 2 mRNA is encoded by seven exons. Most of the 5' untranslated sequence of mPPAR gamma 1 mRNA is encoded by two exons, whereas the 5' untranslated sequence and the extra 30 N-terminal amino acids of mPPAR gamma 2 are encoded by one exon, which is located between the second and third exons coding for mPPAR gamma 1. The last six exons of mPPAR gamma gene code for identical sequences in mPPAR gamma 1 and mPPAR gamma 2 isoforms. The mPPAR gamma 1 and mPPAR gamma 2 isoforms are transcribed from different promoters. The mPPAR gamma gene has been mapped to chromosome 6 E3-F1 by in situ hybridization using a biotin-labeled probe. These results establish that at least one of the PPAR genes yields more than one protein product, similar to that encountered with retinoid X receptor and retinoic acid receptor genes. The existence of multiple PPAR isoforms transcribed from different promoters could increase the diversity of ligand and tissue-specific transcriptional responses.
Resumo:
CD4+ T cells from alpha beta-T-cell receptor transgenic mice were analyzed for coexpression of cytokine mRNAs during phenotype development using a double-label in situ hybridization technique. T cells that produced cytokines in the primary response were a fraction of the activated population, and only a minority of the cytokine-positive cells coexpressed two cytokines. In secondary responses, frequencies of double-positive cells increased, although they remained a minority of the total. Of the cytokine pairs examined, interleukin (IL)-4 and IL-5 were the most frequently coexpressed. IL-4 and interferon gamma showed the greatest tendency toward segregation of expression, being rarely coexpressed after the primary stimulation. These data indicate that there is significant heterogeneity of cytokine gene expression by individual CD4+ T cells during early antigenic responses. Coexpression of any pairs of cytokines, much less Th1 and Th2 cytokines, is generally the exception. The Th0 phenotype is a population phenotype rather than an individual cell phenotype.
Resumo:
A system for tetracycline-regulated inducible gene expression was described recently which relies on constitutive expression of a tetracycline-controlled transactivator (tTA) fusion protein combining the tetracycline repressor and the transcriptional activation domain of VP16 [Gossen, M. & Bujard, H. (1992) Proc. Natl. Acad. Sci. USA 89, 5547-5551]. This system yielded only low levels of transactivator protein, probably because tTA is toxic. To avoid this difficulty, we placed the tTA gene under the control of the inducible promoter to which tTA binds, making expression of tTA itself inducible and autoregulatory. When used to drive expression of the recombination activating genes 1 and 2 (RAG-1 and RAG-2), the autoregulatory system yielded both substantially higher levels of variable (diversity) joining [V(D)J] recombination activity (70-fold on average) and inducible expression in a much larger fraction of transfected cells (autoregulatory, 90%, vs. constitutive, 18%). In addition, this system allowed the creation of transgenic mice in which expression of a luciferase transgene was inducible tens to hundreds of times the basal levels in most tissues examined. Induced levels of expression were highest in thymus and lung and appear to be substantially higher than in previously reported inducible luciferase transgenic mice created with the constitutive system. With the modified system, inducible transactivator mRNA and protein were easily detected in cell lines by RNA and Western blotting, and transactivator mRNA was detected by RNA blotting in some tissues of transgenic mice. This autoregulatory system represents an improved strategy for tetracycline-regulated gene expression both in cultured cells and in transgenic animals.
Resumo:
A PCR-based assay has been devised for the detection and semiquantitation of cells originating from a few donor hematopoietic stem cells (HSCs) in a background of recipient cells. Upon sequencing a segment of murine Y chromosome contained in the plasmid pY2, oligonucleotide primers were designed for specific amplification of the Y chromosome-restricted segment. The HSCs were isolated from the bone marrow of mice on day 4 following a single i.v. injection of 5-fluorouracil and were readily distinguished from other bone marrow elements by the characteristics of low density, absence of lineage-specific surface markers, lack of expression of transferrin receptor, and a high expression of major histocompatibility complex class I antigen. Injection of as few as four such HSCs was shown to produce donor-derived cells (including lymphoid cells) for at least 8 months after transplantation into syngeneic female recipients. Retransplantation, employing 10(6) bone marrow cells from the initial recipients, also yielded clear evidence of repopulation with detectable levels of male donor cells. On statistical grounds, it is clear that long-term repopulation in vivo may result from even a single HSC having the characteristics defined herein.
Resumo:
A method was developed to transplant assembled nicotinic acetylcholine receptors (AcChoRs) and Cl- channels from the electric organ of Torpedo to the membrane of Xenopus oocytes. Membrane vesicles from Torpedo electroplaques were injected into the oocytes and, within a few hours, the oocyte membrane acquired AcChoRs and Cl- channels. The mechanism of expression of these receptors and channels is very different from that which follows the injection of mRNA, since the appearance of receptors after membrane injection does not require de novo protein synthesis or N-glycosylation. This, and other controls, indicate that the foreign receptor-bearing membranes fuse with the oocyte membrane and cause the appearance of functional receptors and channels. All this makes the Xenopus oocyte an even more powerful tool for studies of the structure and function of membrane proteins.
Resumo:
To investigate the functions of paralogous Hox genes, we compared the phenotypic consequences of altering the embryonic patterns of expression of Hoxb-8 and Hoxc-8 in transgenic mice. A comparison of the phenotypic consequences of altered expression of the two paralogs in the axial skeletons of newborns revealed an array of common transformations as well as morphological changes unique to each gene. Divergence of function of the two paralogs was clearly evident in costal derivatives, where increased expression of the two genes affected opposite ends of the ribs. Many of the morphological consequences of expanding the mesodermal domain and magnitude of expression of either gene were atavistic, inducing the transformation of axial skeletal structures from a modern to an earlier evolutionary form. We propose that regional specialization of the vertebral column has been driven by regionalization of Hox gene function and that a major aspect of this evolutionary progression may have been restriction of Hox gene expression.
Resumo:
We have explored the feasibility of using a "double-tagging" assay for assessing which amino acids of a protein are responsible for its binding to another protein. We have chosen the adenovirus E1A-retinoblastoma gene product (pRB) proteins for a model system, and we focused on the high-affinity conserved region 2 of adenovirus E1A (CR2). We used site-specific mutagenesis to generate a mutant E1A gene with a lysine instead of an aspartic acid at position 121 within the CR2 site. We demonstrated that this mutant exhibited little binding to pRB by the double-tagging assay. We also have shown that this lack of binding is not due to any significant decrease in the level of expression of the beta-galactosidase-E1A fusion protein. We then created a "library" of phage expressing beta-galactosidase-E1A fusion proteins with a variety of different mutations within CR2. This library of E1A mutations was used in a double-tagging screening to identify mutant clones that bound to pRB. Three classes of phage were identified: the vast majority of clones were negative and exhibited no binding to pRB. Approximately 1 in 10,000 bound to pRB but not to E1A ("true positives"). A variable number of clones appeared to bind equally well to both pRB and E1A ("false positives"). The DNA sequence of 10 true positive clones yielded the following consensus sequence: DLTCXEX, where X = any amino acid. The recovery of positive clones with only one of several allowed amino acids at each position suggests that most, if not all, of the conserved residues play an important role in binding to pRB. On the other hand, the DNA sequence of the negative clones appeared random. These results are consistent with those obtained from other sources. These data suggest that a double-tagging assay can be employed for determining which amino acids of a protein are important for specifying its interaction with another protein if the complex forms within bacteria. This assay is rapid and up to 1 x 10(6) mutations can be screened at one time.
Resumo:
Chromosome I from the yeast Saccharomyces cerevisiae contains a DNA molecule of approximately 231 kbp and is the smallest naturally occurring functional eukaryotic nuclear chromosome so far characterized. The nucleotide sequence of this chromosome has been determined as part of an international collaboration to sequence the entire yeast genome. The chromosome contains 89 open reading frames and 4 tRNA genes. The central 165 kbp of the chromosome resembles other large sequenced regions of the yeast genome in both its high density and distribution of genes. In contrast, the remaining sequences flanking this DNA that comprise the two ends of the chromosome and make up more than 25% of the DNA molecule have a much lower gene density, are largely not transcribed, contain no genes essential for vegetative growth, and contain several apparent pseudogenes and a 15-kbp redundant sequence. These terminally repetitive regions consist of a telomeric repeat called W', flanked by DNA closely related to the yeast FLO1 gene. The low gene density, presence of pseudogenes, and lack of expression are consistent with the idea that these terminal regions represent the yeast equivalent of heterochromatin. The occurrence of such a high proportion of DNA with so little information suggests that its presence gives this chromosome the critical length required for proper function.
Resumo:
Listeria monocytogenes (LM) is a Gram-positive bacterium that is able to enter host cells, escape from the endocytic vesicle, multiply within the cytoplasm, and spread directly from cell to cell without encountering the extracellular milieu. The ability of LM to gain access to the host cell cytosol allows proteins secreted by the bacterium to efficiently enter the pathway for major histocompatibility complex class I antigen processing and presentation. We have established a genetic system for expression and secretion of foreign antigens by recombinant strains, based on stable site-specific integration of expression cassettes into the LM genome. The ability of LM recombinants to induce protective immunity against a heterologous pathogen was demonstrated with lymphocytic choriomeningitis virus (LCMV). LM strains expressing the entire LCMV nucleoprotein or an H-2Ld-restricted nucleoprotein epitope (aa 118-126) were constructed. Immunization of mice with LM vaccine strains conferred protection against challenge with virulent strains of LCMV that otherwise establish chronic infection in naive adult mice. In vivo depletion of CD8+ T cells from vaccinated mice abrogated their ability to clear viral infection, showing that protective anti-viral immunity was due to CD8+ T cells.
Resumo:
Previous research shows that during the period of Japanese American internment gardening became a popular activity for the interned. Primarily approached historically, little work has been conducted to archaeologically analyze the efforts of landscaping by former internees. Gardening activity can paint a better picture of Japanese American identity during the period of forced confinement. This research investigates internee gardens methodologically through surface survey, ground penetrating radar, excavation, oral history, soil chemistry, archaeobotany, and palynology. The thorough investigation of landscaping efforts of internees builds upon knowledge of expression within Japanese American relocation centers, as well as the understanding of a lineage of gardening as Japanese immigrant tradition. Using available materials, gardeners adapted both tradition and environment for the purpose of improving conditions under internment and maintaining an affiliation to heritage. My examination of internee landscaping better explains how many collectively maintained, adapted, and publicly expressed an ethnic identity.
Resumo:
The research developed in this work consists in proposing a set of techniques for management of social networks and their integration into the educational process. The proposals made are based on assumptions that have been proven with simple examples in a real scenario of university teaching. The results show that social networks have more capacity to spread information than educational web platforms. Moreover, educational social networks are developed in a context of freedom of expression intrinsically linked to Internet freedom. In that context, users can write opinions or comments which are not liked by the staff of schools. However, this feature can be exploited to enrich the educational process and improve the quality of their achievement. The network has covered needs and created new ones. So, the figure of the Community Manager is proposed as agent in educational context for monitoring network and aims to channel the opinions and to provide a rapid response to an academic problem.
Resumo:
There is no doubt that demand for the respect of human rights was one of the factors behind the Arab Spring and Libya is no exception. Four decades of absolute dictatorship headed by Muammar Gaddafi had been further tainted with gross violations of human rights of Libyan citizens and restrictions on their basic freedoms. Before the revolution, Libya was a country where no political parties were allowed. Freedom of expression and the press were extremely restricted. Reports about the country’s human rights violations published by a number of international organizations documented large scale human rights abuses at the hands of the Gaddafi regime. The 17 February 2011 revolution in Libya led to a turning point in the country’s history. The regime of Muammar Gaddafi which had dominated the country since 1969 eventually collapsed, leading to the beginning of the painful task of reconciliation and state building. Nonetheless it is estimated that more than 7000 prisoners are held captive by various militias and armed groups without due process. This in addition to thousands of internally displaced persons. State building involves the consolidation of a democratic state based on a democratic constitution. In 2011, a constitutional declaration was adopted to replace the one that had been in effect since 1969. This was intended as a stop-gap solution to allow the new political forces unleashed in the country time to write a new democratic constitution. To help consolidate the democratic state, three elements are required: that human rights be placed at its core; that these rights are truly implemented and applied; and lastly that the independence of the judiciary is safeguarded. For all this to happen it is also essential to strengthen education on human rights by encouraging non-governmental organizations to take a stronger role in promoting human rights. Libyan citizens can only avail themselves of these rights and strengthen their implementation if they know what they are and how they can benefit from their implementation
Resumo:
The concept of citizenship is one of the most complicated in political and social sciences. Its long process of historical development makes dealing with it particularly complicated. Citizenship is by nature a multi-dimensional concept: there is a legal citizenship, referring first to the equal legal status of individuals, for instance the equality between men and women. Legal citizenship also refers to a political dimension, the right to start and/or join political parties, or political participation more broadly. Thirdly, it has a religious dimension relating to the right of all religious groups to equally and freely practice their religious customs and rituals. Finally, legal citizenship possesses a socio-economic dimension related to the non-marginalisation of different social categories, for instance women. All of these dimensions, far from being purely objects of legal texts and codifications, are emerging as an arena of political struggle within the Egyptian society. Citizenship as a concept has its roots in European history and, more specifically, the emergence of the nation state in Europe and the ensuing economic and social developments in these societies. These social developments and the rise of the nation state have worked in parallel, fostering the notion of an individual citizen bestowed with rights and obligations. This gradual interaction was very different from what happened in the context of the Arab world. The emerging of the nation state in Egypt was an outcome of modernisation efforts from the top-down; it coercively redesigned the social structure, by eliminating or weakening some social classes in favour of others. These efforts have had an impact on the state-society relation at least in two respects. First, on the overlapping relation between some social classes and the state, and second, on the ability of some social groups to self-organise, define and raise their demands. This study identifies how different political parties in Egypt envision the multi-dimensional concept of citizenship. We focus on the following elements: Nature of the state (identity, nature of the regime) Liberties and rights (election laws, political party laws, etc.) Right to gather and organise (syndicates, associations, etc.) Freedom of expression and speech (right to protest, sit in, strike, etc.) Public and individual liberties (freedom of belief, personal issues, etc.) Rights of marginalised groups (women, minorities, etc.)
Resumo:
Imprinting is an epigenetic mechanism that restrains the expression of about 100 genes to one allele depending on its parental origin. Several imprinted genes are implicated in neurodevelopmental brain disorders, such as autism, Angelman, and Prader-Willi syndromes. However, how expression of these imprinted genes is regulated during neural development is poorly understood. Here, using single and double KO animals for the transcription factors Neurogenin2 (Ngn2) and Achaete-scute homolog 1 (Ascl1), we found that the expression of a specific subset of imprinted genes is controlled by these proneural genes. Using in situ hybridization and quantitative PCR, we determined that five imprinted transcripts situated at the Dlk1-Gtl2 locus (Dlk1, Gtl2, Mirg, Rian, Rtl1) are upregulated in the dorsal telencephalon of Ngn2 KO mice. This suggests that Ngn2 influences the expression of the entire Dlk1-Gtl2 locus, independently of the parental origin of the transcripts. Interestingly 14 other imprinted genes situated at other imprinted loci were not affected by the loss of Ngn2. Finally, using Ngn2/Ascl1 double KO mice, we show that the upregulation of genes at the Dlk1-Gtl2 locus in Ngn2 KO animals requires a functional copy of Ascl1. Our data suggest a complex interplay between proneural genes in the developing forebrain that control the level of expression at the imprinted Dlk1-Gtl2 locus (but not of other imprinted genes). This raises the possibility that the transcripts of this selective locus participate in the biological effects of proneural genes in the developing telencephalon.
Resumo:
Hox genes encode transcription factors that regulate morphogenesis in all animals with bilateral symmetry. Although Hox genes have been extensively studied, their molecular function is not clear in vertebrates, and only a limited number of genes regulated by Hox transcription factors have been identified. Hoxa2 is required for correct development of the second branchial arch, its major domain of expression. We now show that Meox1 is genetically downstream from Hoxa2 and is a direct target. Meox1 expression is downregulated in the second arch of Hoxa2 mouse mutant embryos. In chromatin immunoprecipitation (ChIP), Hoxa2 binds to the Meox1 proximal promoter. Two highly conserved binding sites contained in this sequence are required for Hoxa2-dependent activation of the Meox1 promoter. Remarkably, in the absence of Meox1 and its close homolog Meox2, the second branchial arch develops abnormally and two of the three skeletal elements patterned by Hoxa2 are malformed. Finally, we show that Meox1 can specifically bind the DNA sequences recognized by Hoxa2 on its functional target genes. These results provide new insight into the Hoxa2 regulatory network that controls branchial arch identity.