990 resultados para Structural modeling
Resumo:
A comparative study has been made of the radiation grafting of styrene onto poly(tetrafluoroethylene-co-perfluoropropyl vinyl ether) (PFA) and polypropylene (PP) substrates, using the simultaneous irradiation method. Effects of grafting conditions such as monomer concentrations, type of solvent, dose rate and irradiation dose on the grafting yield were investigated. Under the same grafting conditions it was found that a higher degree of grafting of styrene was obtained using a mixture of dichloromethane/methanol solvents for PFA and methanol for PP and the degree of grafting was higher in PP than in PFA at all doses. However, the micro-Raman spectroscopy analysis of the graft revealed that, for the same degree of grafting, the penetration depth of the grafted polystyrene into the substrate was higher in PFA than in PP substrates. In both polymers the crystallinity was hardly affected by the grafting process and the degree of crystallinity decreased slightly with grafting dose. The dependence of the initial rate of grafting on the dose rate and the monomer concentration was found to be 0.6 and 1.4 order for PFA and 0.15 and 2.2 for PP, respectively. The degree of grafting increased with increasing radiation dose in both polymers. However, the grafting yield decreased with an increase in the dose rate. The increase in the overall grafting yield for PFA and PP was accompanied by a proportional increase in the penetration depth of the graft into the substrates. (C) 2003 Society of Chemical Industry.
Resumo:
Iron chelators of the 2-pyridinecarbaldehyde isonicotinoylhydrazone (HPCIH) class show high potential for the treatment of iron overload diseases. In the present study, selected first-row transition metal (from Mn to Zn) complexes with HPCIH and 2-pyridinecarbaldehyde (4'-aminobenzoyl)hydrazone (HPCAH) were synthesised and characterised. Crystallography reveals that HPCAH exclusively forms bis complexes with divalent transition metals, with each ligand coordinating meridionally through its pyridine-N, imine-N and carbonyl-O atoms, forming distorted octahedral cis-MN4O2 complexes. Complexes of HPCIH were more varied and unpredictable, with metal/ligand ratios of 1:1, 1:2, 2:2 and 3:2 obtained with different metal ions. The isonicotinoyl ring N-atom in HPCIH was found to be an effective ligand, and this resulted in the varied metal/ligand ratios observed. The formation constants of divalent metal complexes with HPCIH were determined by potentiometric titrations and the values obtained were consistent with similar tridentate ligands and with the Irving-Williams order. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003).
Resumo:
The 93 K X-ray crystal structure of tris(ethane-1,2-diamine)zinc(II) dinitrate is reported. As predicted by the spectroscopic studies of other workers, there is a reversible phase transition of the structure at low temperature. We have determined this temperature to be 143 K. The structure at this temperature and below resembles that of the room temperature structure, except the crystallographic D-3 symmetry of the complex cation (296 K) is lowered to C-2 ( below 144 K) by subtle changes in cation-anion hydrogen bonding. No change in the conformation of the cation or its bond lengths and angles was found.
Resumo:
O presente estudo tem por objetivo avaliar se o perfil do adotante de inovações altera a relação entre o Valor Percebido e a Intenção de Compra de mídias móveis (smartphones, tablets, ultrabooks e leitores de e-books). Trata-se de uma pesquisa quantitativa que busca explorar a relação estrutural entre as variáveis por meio de Modelagem de Equações Estruturais (SEM – Strutural Equation Modeling). O modelo de pesquisa proposto foi desenvolvido tendo como base a Teoria da Difusão da Inovação (TDI), a Teoria Unificada de Aceitação e Uso de Tecnologia (UTAUT), o Modelo de Aceitação de Tecnologia (TAM), o Modelo Baseado em Valor (VAM), o Modelo de Aceitação de Tecnologia pelo Consumidor (CAT) e o Modelo de Influência Social (IS). Para coletar os dados foi utilizada a técnica snowball sampling ou amostragem em bola de neve, forma de amostragem não probabilística utilizada em pesquisas sociais. Foi feito um levantamento (survey), distribuindo-se questionário disponibilizado pela rede social Facebook, a partir dos contatos do autorsolicitando-se que os respondentes replicassem em suas páginas pessoais o link da pesquisa, ampliando a amostra. A coleta dos dados foi realizada nos meses de setembro e outubro de 2013, obtendo-se um total de 362 questionários respondidos. O estudo apresentou um efeito significativo da variável Valor Percebido na Intenção de Compra (estatística t = 4,506; nível de significância de 1%), além de sustentar a influência moderadora do Perfil do Adotante sobre essa relação (estatística t = 4,066; nível de significância de 1%), apresentando alto impacto sobre a Intenção de Compra (f 2 = 0,582) e relevância preditiva moderada (q2 = 0,290). Entre as variáveis antecedentes relacionadas à adoção de tecnologia, não apresentaram efeito significativo sobre o Valor Percebido: a Facilidade de Uso Percebida, a Complexidade Percebida e o Risco Percebido. O modelo contribuiu significativamente para explicar a influência dos fatores que impactam o Valor Percebido (R2 = 51,7%) o efeito do Valor Percebido na Intenção de Compra (R2 = 49,1%) de equipamentos eletrônicos portáteis. O suporte da presumidade influência moderadora do Perfil do Adotante sobre a relação Valor Percebido e Intenção de Compra indica que as organizações devem conhecer melhor os consumidores desse tipo de equipamento móveis, segmentando e desenvolvendo ações alinhadas com cada perfil de adotante.
Resumo:
In this work it is demonstrated that the capacitance between two cylinders increases with the rotation angle and it has a fundamental influence on the composite dielectric constant. The dielectric constant is lower for nematic materials than for isotropic ones and this can be attributed to the effect of the filler alignment in the capacitance. The effect of aspect ratio in the conductivity is also studied in this work. Finally, based on previous work and by comparing to results from the literature it is found that the electrical conductivity in this type of composites is due to hopping between nearest fillers resulting in a weak disorder regime that is similar to the single junction expression.
Resumo:
Polymers have become the reference material for high reliability and performance applications. In this work, a multi-scale approach is proposed to investigate the mechanical properties of polymeric based material under strain. To achieve a better understanding of phenomena occurring at the smaller scales, a coupling of a Finite Element Method (FEM) and Molecular Dynamics (MD) modeling in an iterative procedure was employed, enabling the prediction of the macroscopic constitutive response. As the mechanical response can be related to the local microstructure, which in turn depends on the nano-scale structure, the previous described multi-scale method computes the stress-strain relationship at every analysis point of the macro-structure by detailed modeling of the underlying micro- and meso-scale deformation phenomena. The proposed multi-scale approach can enable prediction of properties at the macroscale while taking into consideration phenomena that occur at the mesoscale, thus offering an increased potential accuracy compared to traditional methods.
Resumo:
Pectus Carinatum (PC) is a chest deformity consisting on the anterior protrusion of the sternum and adjacent costal cartilages. Non-operative corrections, such as the orthotic compression brace, require previous information of the patient chest surface, to improve the overall brace fit. This paper focuses on the validation of the Kinect scanner for the modelling of an orthotic compression brace for the correction of Pectus Carinatum. To this extent, a phantom chest wall surface was acquired using two scanner systems – Kinect and Polhemus FastSCAN – and compared through CT. The results show a RMS error of 3.25mm between the CT data and the surface mesh from the Kinect sensor and 1.5mm from the FastSCAN sensor
Resumo:
Pectus Carinatum is a deformity of the chest wall, characterized by an anterior protrusion of the sternum, often corrected surgically due to cosmetic motivation. This work presents an alternative approach to the current open surgery option, proposing a novel technique based on a personalized orthosis. Two different processes for the orthosis’ personalization are presented. One based on a 3D laser scan of the patient chest, followed by the reconstruction of the thoracic wall mesh using a radial basis function, and a second one, based on a computer tomography scan followed by a neighbouring cells algorithm. The axial position where the orthosis is to be located is automatically calculated using a Ray-Triangle intersection method, whose outcome is input to a pseudo Kochenek interpolating spline method to define the orthosis curvature. Results show that no significant differences exist between the patient chest physiognomy and the curvature angle and size of the orthosis, allowing a better cosmetic outcome and less initial discomfort
Resumo:
Pectus excavatum is the most common deformity of the thorax. Pre-operative diagnosis usually includes Computed Tomography (CT) to successfully employ a thoracic prosthesis for anterior chest wall remodeling. Aiming at the elimination of radiation exposure, this paper presents a novel methodology for the replacement of CT by a 3D laser scanner (radiation-free) for prosthesis modeling. The complete elimination of CT is based on an accurate determination of ribs position and prosthesis placement region through skin surface points. The developed solution resorts to a normalized and combined outcome of an artificial neural network (ANN) set. Each ANN model was trained with data vectors from 165 male patients and using soft tissue thicknesses (STT) comprising information from the skin and rib cage (automatically determined by image processing algorithms). Tests revealed that ribs position for prosthesis placement and modeling can be estimated with an average error of 5.0 ± 3.6 mm. One also showed that the ANN performance can be improved by introducing a manually determined initial STT value in the ANN normalization procedure (average error of 2.82 ± 0.76 mm). Such error range is well below current prosthesis manual modeling (approximately 11 mm), which can provide a valuable and radiation-free procedure for prosthesis personalization.
Resumo:
Tourism is a phenomenon that moves millions of people around the world, taking as a major driver of the global economy. Such relevance is reflected in the proliferation of studies in the overall area known as tourism, under various perspectives and backgrounds. In the light of such multitude of insights our study aims at gaining a deeper understanding of customer profiling and behavior in cross-border tourism destinations. Previous studies conducted in such contexts suggest that cross-border regions (CBRs) are an attractive and desirable idea, yet requiring further theoretical and empirical research. The new configuration of many CBRs calls for a debate on issues concerning its development, raising up important dimensions, such as, organization and planning of common tourism destinations. There is still a gap in the understanding of destination management in CBRs and the customer profile and motivations. Overall this research aims at attaining a deeper understanding of the profile and behavior of consumers in tourism settings, addressing the predisposition for the destination. The study addresses the following research question: “What factors influence customer behavior and attitudes in a CBRs tourism destination?” To address our question we will take an interdisciplinary perspective bringing together inputs from marketing, tourism and local economics. When addressing consumer behavior in tourism previous studies considered the following constructs: involvement, place attachment, satisfaction and destination loyalty. In order to establish the causal relationships in our theoretical model, we intend to develop a predominant quantitative design, yet we plan to conduct exploratory interviews. In the analysis and discussion of results, we intend to use Structural Equation Modeling. It will further allow understanding how the constructs in the research model relate to each other in the specified context. Results are also expected to have managerial implications. Consequently our results may assist decision makers in developing their local policies.
Resumo:
Tourism is a phenomenon that moves millions of people around the world, taking as a major driver of the global economy. Such relevance is reflected in the proliferation of studies in the overall area known as tourism, under various perspectives and backgrounds. In the light of such multitude of insights our study aims at gaining a deeper understanding of customer profiling and behavior in cross-border tourism destinations. Previous studies conducted in such contexts suggest that cross-border regions (CBRs) are an attractive and desirable idea, yet requiring further theoretical and empirical research. The new configuration of many CBRs calls for a debate on issues concerning its development, raising up important dimensions, such as, organization and planning of common tourism destinations. There is still a gap in the understanding of destination management in CBRs and the customer profile and motivations. Overall this research aims at attaining a deeper understanding of the profile and behavior of consumers in tourism settings, addressing the predisposition for the destination. The study addresses the following research question: “What factors influence customer behavior and attitudes in a CBRs tourism destination?” To address our question we will take an interdisciplinary perspective bringing together inputs from marketing, tourism and local economics. When addressing consumer behavior in tourism previous studies considered the following constructs: involvement, place attachment, satisfaction and destination loyalty. In order to establish the causal relationships in our theoretical model, we intend to develop a predominant quantitative design, yet we plan to conduct exploratory interviews. In the analysis and discussion of results, we intend to use Structural Equation Modeling. It will further allow understanding how the constructs in the research model relate to each other in the specified context. Results are also expected to have managerial implications. Consequently our results may assist decision makers in developing their local policies.
Resumo:
Pectus excavatum is the most common deformity of the thorax. Pre-operative diagnosis usually includes Computed Tomography (CT) to successfully employ a thoracic prosthesis for anterior chest wall remodeling. Aiming at the elimination of radiation exposure, this paper presents a novel methodology for the replacement of CT by a 3D laser scanner (radiation-free) for prosthesis modeling. The complete elimination of CT is based on an accurate determination of ribs position and prosthesis placement region through skin surface points. The developed solution resorts to a normalized and combined outcome of an artificial neural network (ANN) set. Each ANN model was trained with data vectors from 165 male patients and using soft tissue thicknesses (STT) comprising information from the skin and rib cage (automatically determined by image processing algorithms). Tests revealed that ribs position for prosthesis placement and modeling can be estimated with an average error of 5.0 ± 3.6 mm. One also showed that the ANN performance can be improved by introducing a manually determined initial STT value in the ANN normalization procedure (average error of 2.82 ± 0.76 mm). Such error range is well below current prosthesis manual modeling (approximately 11 mm), which can provide a valuable and radiation-free procedure for prosthesis personalization.
Resumo:
Pectus Carinatum (PC) is a chest deformity consisting on the anterior protrusion of the sternum and adjacent costal cartilages. Non-operative corrections, such as the orthotic compression brace, require previous information of the patient chest surface, to improve the overall brace fit. This paper focuses on the validation of the Kinect scanner for the modelling of an orthotic compression brace for the correction of Pectus Carinatum. To this extent, a phantom chest wall surface was acquired using two scanner systems – Kinect and Polhemus FastSCAN – and compared through CT. The results show a RMS error of 3.25mm between the CT data and the surface mesh from the Kinect sensor and 1.5mm from the FastSCAN sensor.
Resumo:
Pectus Carinatum is a deformity of the chest wall, characterized by an anterior protrusion of the sternum, often corrected surgically due to cosmetic motivation. This work presents an alternative approach to the current open surgery option, proposing a novel technique based on a personalized orthosis. Two different processes for the orthosis’ personalization are presented. One based on a 3D laser scan of the patient chest, followed by the reconstruction of the thoracic wall mesh using a radial basis function, and a second one, based on a computer tomography scan followed by a neighbouring cells algorithm. The axial position where the orthosis is to be located is automatically calculated using a Ray-Triangle intersection method, whose outcome is input to a pseudo Kochenek interpolating spline method to define the orthosis curvature. Results show that no significant differences exist between the patient chest physiognomy and the curvature angle and size of the orthosis, allowing a better cosmetic outcome and less initial discomfort.