976 resultados para Streptozotocin Induced Diabetic Rats
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Biologia Geral e Aplicada - IBB
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Odontologia - FOAR
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
AIM: To evaluate the influence of ovariectomy combined with lack of masticatory force in the evolution of periodontal disease induced in rats.METHODS: Forty rats were bilaterally ovariectomized and 40 were submitted to sham ovariectomy. Periodontal disease was induced in the mandibular left first molar and the maxillary left first molar was extracted from half of the rats. The rats were randomly euthanized at 3, 7, 14 and 30 days post periodontal disease induction. Serial sections were obtained from the furcation area and stained for histological and histomorphometric analysis. The results of the histomorphometric analysis were statistically analyzed by ANOVA and Tukey tests.RESULTS: The results demonstrated statistically significant differences in the percentage of bone tissue when the variables presence or absence of estrogen (p=0.020) and time of euthanasia (p=0.002) were evaluated. However, the extraction procedure did not significantly affect the percentage of bone tissue (p=0.598).CONCLUSIONS : The bone loss resulting from periodontal disease is increased by estrogen deficiency and varies according to the time course of periodontitis. In contrast, masticatory force does not seem to interfere in bone loss derived from periodontal disease.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Fisioterapia - FCT
Resumo:
Pós-graduação em Odontologia - FOAR
Resumo:
Rheumatoid arthritis (RA) is a chronic illness with great potential to cause comorbidities resulting from cumulative inflammatory activities, and it contributes with the increase of disabilities and death of patients. It affects 1 to 2% of world population and usually occurs between 30 and 50 years of age. Among existing therapeutic options for the disease non-steroidal anti-inflammatory drugs (NSAIDs) still play an important part in the treatment, being widely used by patients to relieve pain and stiffness. However, this class of drugs causes many adverse gastrointestinal effects, such as dyspepsia, heartburn, nausea and vomit, and its use is one of the most common causes of peptic ulcers. Mangiferin (a glicosilated xanthone extracted mainly from the bark of Mangifera indica L.) is the main compound of an aqueous extract made from the bark stem of the mango tree. Previous studies conducted by our research group prove the anti-inflammatory action of mangiferin on an animal model of periodontitis, and its gastroprotective action has been described before. Considering these informations this study evaluated mangiferin’s potential on the treatment of RA and on gastric ulcer healing in animal models, and analyzed toxicity parameters to assure efficacy and safety of the compound as potential new drug for the treatment of the disease. RA was induced in rats by subcutaneous injection of bovine collagen and Freund’s complete adjuvant. This method presented low incidence of RA in rats, but we were able to induce the disease in 60 to 70% of the animals. Due to the wide use of NSAIDs and its potential to cause peptic ulcers, we induced gastric ulcer on arthritic rats to analyze mangiferin’s gastric healing effect. After 14 days of treatment we noticed small increase of the lesion area of animals treated with mangiferin or ibuprofen, when compared to the animals... (Complete abstract click electronic access below)
Resumo:
The present study aimed to analyze the effects of exercise performed at aerobic/anaerobic transition on non-alcoholic hepatic steatosis (NAHS) markers in diabetic rats. Adult (60 days) male Wistar rats were divided into 4 groups: sedentary control (SC), trained control (TC), sedentary diabetic (i.v. alloxan injection) (SD) and trained diabetic (TD). At the beginning of the experiment, all the animals were submitted to maximal lactate steady state test (MLSS) in order to identify the aerobic/anaerobic metabolic transition during swimming exercise. The trained groups were submitted to swimming, supporting overloads (% of body weight – b.w.) equivalent to MLSS intensity, 1h/day, 5 days/week, during 8 weeks. We analyzed: serum ALT, AST, albumin, glucose and free fat acids (FFA), body weight and total lipid concentrations in the liver. The diabetic groups showed higher (ANOVA two-way, p<0.05) serum glucose (SD=200% and TD= 150%) and weight loss (SD= 15.0% and TD= 8.5%) compared to controls and the SD showed higher glucose concentration and weight loss when compared to TD. The work load (% b.w.) equivalent to the MLSS was lower in TD (4.7%) than in TC (5.6%) group. The NAHS markers (U/L) did not show... (Complete abstract click electronic access below)
Resumo:
Alveolar bone resorption results from the inflammatory response to periodontal pathogens. Systemic diseases that affect the host response, such as type 1 diabetes mellitus (DM1), can potentiate the severity of periodontal disease (PD) and accelerate bone resorption. However, the biological mechanisms by which DM1 modulates PD are not fully understood. The aim of this study was to determine the influence of DM1 on alveolar bone resorption and to evaluate the role of receptor activator of nuclear factor-kappaB ligand (RANKL)/osteoprotegerin (OPG) in osteoclastogenesis in rats. PD was induced by means of ligature in nondiabetic and in streptozotocyn-induced DM1 rats. Morphological and morphometric analyses, stereology and osteoclast counting were performed. RANKL and OPG mRNA levels, protein content, and location were determined. PD caused alveolar bone resorption, increased the number of osteoclasts in the alveolar bone crest and also promoted changes in RANKL/OPG mRNA expression. DM1 alone showed alveolar bone destruction and an increased number of osteoclasts at the periapical and furcal regions. DM1 exacerbated these characteristics, with a greater impact on bone structure, resulting in a low OPG content and a higher RANKL/OPG ratio, which correlated with prominent osteoclastogenesis. This work demonstrates that the effects of PD and DM1 enhance bone destruction, confirms the importance of the RANKL signaling pathway in bone destruction in DM1 in animal models and suggests the existence of alternative mechanisms potentiating bone degradation in PD.