987 resultados para Stochastic Approximation Algorithms
Resumo:
Notre consommation en eau souterraine, en particulier comme eau potable ou pour l'irrigation, a considérablement augmenté au cours des années. De nombreux problèmes font alors leur apparition, allant de la prospection de nouvelles ressources à la remédiation des aquifères pollués. Indépendamment du problème hydrogéologique considéré, le principal défi reste la caractérisation des propriétés du sous-sol. Une approche stochastique est alors nécessaire afin de représenter cette incertitude en considérant de multiples scénarios géologiques et en générant un grand nombre de réalisations géostatistiques. Nous rencontrons alors la principale limitation de ces approches qui est le coût de calcul dû à la simulation des processus d'écoulements complexes pour chacune de ces réalisations. Dans la première partie de la thèse, ce problème est investigué dans le contexte de propagation de l'incertitude, oú un ensemble de réalisations est identifié comme représentant les propriétés du sous-sol. Afin de propager cette incertitude à la quantité d'intérêt tout en limitant le coût de calcul, les méthodes actuelles font appel à des modèles d'écoulement approximés. Cela permet l'identification d'un sous-ensemble de réalisations représentant la variabilité de l'ensemble initial. Le modèle complexe d'écoulement est alors évalué uniquement pour ce sousensemble, et, sur la base de ces réponses complexes, l'inférence est faite. Notre objectif est d'améliorer la performance de cette approche en utilisant toute l'information à disposition. Pour cela, le sous-ensemble de réponses approximées et exactes est utilisé afin de construire un modèle d'erreur, qui sert ensuite à corriger le reste des réponses approximées et prédire la réponse du modèle complexe. Cette méthode permet de maximiser l'utilisation de l'information à disposition sans augmentation perceptible du temps de calcul. La propagation de l'incertitude est alors plus précise et plus robuste. La stratégie explorée dans le premier chapitre consiste à apprendre d'un sous-ensemble de réalisations la relation entre les modèles d'écoulement approximé et complexe. Dans la seconde partie de la thèse, cette méthodologie est formalisée mathématiquement en introduisant un modèle de régression entre les réponses fonctionnelles. Comme ce problème est mal posé, il est nécessaire d'en réduire la dimensionnalité. Dans cette optique, l'innovation du travail présenté provient de l'utilisation de l'analyse en composantes principales fonctionnelles (ACPF), qui non seulement effectue la réduction de dimensionnalités tout en maximisant l'information retenue, mais permet aussi de diagnostiquer la qualité du modèle d'erreur dans cet espace fonctionnel. La méthodologie proposée est appliquée à un problème de pollution par une phase liquide nonaqueuse et les résultats obtenus montrent que le modèle d'erreur permet une forte réduction du temps de calcul tout en estimant correctement l'incertitude. De plus, pour chaque réponse approximée, une prédiction de la réponse complexe est fournie par le modèle d'erreur. Le concept de modèle d'erreur fonctionnel est donc pertinent pour la propagation de l'incertitude, mais aussi pour les problèmes d'inférence bayésienne. Les méthodes de Monte Carlo par chaîne de Markov (MCMC) sont les algorithmes les plus communément utilisés afin de générer des réalisations géostatistiques en accord avec les observations. Cependant, ces méthodes souffrent d'un taux d'acceptation très bas pour les problèmes de grande dimensionnalité, résultant en un grand nombre de simulations d'écoulement gaspillées. Une approche en deux temps, le "MCMC en deux étapes", a été introduite afin d'éviter les simulations du modèle complexe inutiles par une évaluation préliminaire de la réalisation. Dans la troisième partie de la thèse, le modèle d'écoulement approximé couplé à un modèle d'erreur sert d'évaluation préliminaire pour le "MCMC en deux étapes". Nous démontrons une augmentation du taux d'acceptation par un facteur de 1.5 à 3 en comparaison avec une implémentation classique de MCMC. Une question reste sans réponse : comment choisir la taille de l'ensemble d'entrainement et comment identifier les réalisations permettant d'optimiser la construction du modèle d'erreur. Cela requiert une stratégie itérative afin que, à chaque nouvelle simulation d'écoulement, le modèle d'erreur soit amélioré en incorporant les nouvelles informations. Ceci est développé dans la quatrième partie de la thèse, oú cette méthodologie est appliquée à un problème d'intrusion saline dans un aquifère côtier. -- Our consumption of groundwater, in particular as drinking water and for irrigation, has considerably increased over the years and groundwater is becoming an increasingly scarce and endangered resource. Nofadays, we are facing many problems ranging from water prospection to sustainable management and remediation of polluted aquifers. Independently of the hydrogeological problem, the main challenge remains dealing with the incomplete knofledge of the underground properties. Stochastic approaches have been developed to represent this uncertainty by considering multiple geological scenarios and generating a large number of realizations. The main limitation of this approach is the computational cost associated with performing complex of simulations in each realization. In the first part of the thesis, we explore this issue in the context of uncertainty propagation, where an ensemble of geostatistical realizations is identified as representative of the subsurface uncertainty. To propagate this lack of knofledge to the quantity of interest (e.g., the concentration of pollutant in extracted water), it is necessary to evaluate the of response of each realization. Due to computational constraints, state-of-the-art methods make use of approximate of simulation, to identify a subset of realizations that represents the variability of the ensemble. The complex and computationally heavy of model is then run for this subset based on which inference is made. Our objective is to increase the performance of this approach by using all of the available information and not solely the subset of exact responses. Two error models are proposed to correct the approximate responses follofing a machine learning approach. For the subset identified by a classical approach (here the distance kernel method) both the approximate and the exact responses are knofn. This information is used to construct an error model and correct the ensemble of approximate responses to predict the "expected" responses of the exact model. The proposed methodology makes use of all the available information without perceptible additional computational costs and leads to an increase in accuracy and robustness of the uncertainty propagation. The strategy explored in the first chapter consists in learning from a subset of realizations the relationship between proxy and exact curves. In the second part of this thesis, the strategy is formalized in a rigorous mathematical framework by defining a regression model between functions. As this problem is ill-posed, it is necessary to reduce its dimensionality. The novelty of the work comes from the use of functional principal component analysis (FPCA), which not only performs the dimensionality reduction while maximizing the retained information, but also allofs a diagnostic of the quality of the error model in the functional space. The proposed methodology is applied to a pollution problem by a non-aqueous phase-liquid. The error model allofs a strong reduction of the computational cost while providing a good estimate of the uncertainty. The individual correction of the proxy response by the error model leads to an excellent prediction of the exact response, opening the door to many applications. The concept of functional error model is useful not only in the context of uncertainty propagation, but also, and maybe even more so, to perform Bayesian inference. Monte Carlo Markov Chain (MCMC) algorithms are the most common choice to ensure that the generated realizations are sampled in accordance with the observations. Hofever, this approach suffers from lof acceptance rate in high dimensional problems, resulting in a large number of wasted of simulations. This led to the introduction of two-stage MCMC, where the computational cost is decreased by avoiding unnecessary simulation of the exact of thanks to a preliminary evaluation of the proposal. In the third part of the thesis, a proxy is coupled to an error model to provide an approximate response for the two-stage MCMC set-up. We demonstrate an increase in acceptance rate by a factor three with respect to one-stage MCMC results. An open question remains: hof do we choose the size of the learning set and identify the realizations to optimize the construction of the error model. This requires devising an iterative strategy to construct the error model, such that, as new of simulations are performed, the error model is iteratively improved by incorporating the new information. This is discussed in the fourth part of the thesis, in which we apply this methodology to a problem of saline intrusion in a coastal aquifer.
Resumo:
We investigate how correlations between the diversity of the connectivity of networks and the dynamics at their nodes affect the macroscopic behavior. In particular, we study the synchronization transition of coupled stochastic phase oscillators that represent the node dynamics. Crucially in our work, the variability in the number of connections of the nodes is correlated with the width of the frequency distribution of the oscillators. By numerical simulations on Erdös-Rényi networks, where the frequencies of the oscillators are Gaussian distributed, we make the counterintuitive observation that an increase in the strength of the correlation is accompanied by an increase in the critical coupling strength for the onset of synchronization. We further observe that the critical coupling can solely depend on the average number of connections or even completely lose its dependence on the network connectivity. Only beyond this state, a weighted mean-field approximation breaks down. If noise is present, the correlations have to be stronger to yield similar observations.
Resumo:
The ancient temple dedicated to the Roman Emperor Augustus on the hilltop of Tarraco (today’s Tarragona), was the main element of the sacred precinct of the Imperial cult. It was a two hectare square, bordered by a portico with an attic decorated with a sequence of clypeus (i.e. monumental shields) made with marble plates from the Luni-Carrara’s quarries. This contribution presents the results of the analysis of a three-dimensional photogrammetric survey of one of these clipeus, partially restored and exhibited at the National Archaeological Museum of Tarragona. The perimeter ring was bounded by a sequence of meanders inscribed in a polygon of 11 sides, a hendecagon. Moreover, a closer geometric analysis suggests that the relationship between the outer meander rim and the oval pearl ring that delimited the divinity of Jupiter Ammon can be accurately determined by the diagonals of an octagon inscribed in the perimeter of the clypeus. This double evidence suggests a combined layout, in the same design, of an octagon and a hendecagon. Hypothetically, this could be achieved by combining the octagon with the approximation to Pi used in antiquity: 22/7 of the circle’s diameter. This method allows the drawing of a hendecagon with a clearly higher precision than with other ancient methods. Even the modelling of the motifs that separate the different decorative stripes corroborates the geometric scheme that we propose.
Resumo:
This study examined the independent effect of skewness and kurtosis on the robustness of the linear mixed model (LMM), with the Kenward-Roger (KR) procedure, when group distributions are different, sample sizes are small, and sphericity cannot be assumed. Methods: A Monte Carlo simulation study considering a split-plot design involving three groups and four repeated measures was performed. Results: The results showed that when group distributions are different, the effect of skewness on KR robustness is greater than that of kurtosis for the corresponding values. Furthermore, the pairings of skewness and kurtosis with group size were found to be relevant variables when applying this procedure. Conclusions: With sample sizes of 45 and 60, KR is a suitable option for analyzing data when the distributions are: (a) mesokurtic and not highly or extremely skewed, and (b) symmetric with different degrees of kurtosis. With total sample sizes of 30, it is adequate when group sizes are equal and the distributions are: (a) mesokurtic and slightly or moderately skewed, and sphericity is assumed; and (b) symmetric with a moderate or high/extreme violation of kurtosis. Alternative analyses should be considered when the distributions are highly or extremely skewed and samples sizes are small.
Resumo:
A technique for simultaneous localisation and mapping (SLAM) for large scale scenarios is presented. This solution is based on the use of independent submaps of a limited size to map large areas. In addition, a global stochastic map, containing the links between adjacent submaps, is built. The information in both levels is corrected every time a loop is closed: local maps are updated with the information from overlapping maps, and the global stochastic map is optimised by means of constrained minimisation
Resumo:
Network virtualisation is considerably gaining attentionas a solution to ossification of the Internet. However, thesuccess of network virtualisation will depend in part on how efficientlythe virtual networks utilise substrate network resources.In this paper, we propose a machine learning-based approachto virtual network resource management. We propose to modelthe substrate network as a decentralised system and introducea learning algorithm in each substrate node and substrate link,providing self-organization capabilities. We propose a multiagentlearning algorithm that carries out the substrate network resourcemanagement in a coordinated and decentralised way. The taskof these agents is to use evaluative feedback to learn an optimalpolicy so as to dynamically allocate network resources to virtualnodes and links. The agents ensure that while the virtual networkshave the resources they need at any given time, only the requiredresources are reserved for this purpose. Simulations show thatour dynamic approach significantly improves the virtual networkacceptance ratio and the maximum number of accepted virtualnetwork requests at any time while ensuring that virtual networkquality of service requirements such as packet drop rate andvirtual link delay are not affected.
Resumo:
New economic and enterprise needs have increased the interest and utility of the methods of the grouping process based on the theory of uncertainty. A fuzzy grouping (clustering) process is a key phase of knowledge acquisition and reduction complexity regarding different groups of objects. Here, we considered some elements of the theory of affinities and uncertain pretopology that form a significant support tool for a fuzzy clustering process. A Galois lattice is introduced in order to provide a clearer vision of the results. We made an homogeneous grouping process of the economic regions of Russian Federation and Ukraine. The obtained results gave us a large panorama of a regional economic situation of two countries as well as the key guidelines for the decision-making. The mathematical method is very sensible to any changes the regional economy can have. We gave an alternative method of the grouping process under uncertainty.
Resumo:
Learning of preference relations has recently received significant attention in machine learning community. It is closely related to the classification and regression analysis and can be reduced to these tasks. However, preference learning involves prediction of ordering of the data points rather than prediction of a single numerical value as in case of regression or a class label as in case of classification. Therefore, studying preference relations within a separate framework facilitates not only better theoretical understanding of the problem, but also motivates development of the efficient algorithms for the task. Preference learning has many applications in domains such as information retrieval, bioinformatics, natural language processing, etc. For example, algorithms that learn to rank are frequently used in search engines for ordering documents retrieved by the query. Preference learning methods have been also applied to collaborative filtering problems for predicting individual customer choices from the vast amount of user generated feedback. In this thesis we propose several algorithms for learning preference relations. These algorithms stem from well founded and robust class of regularized least-squares methods and have many attractive computational properties. In order to improve the performance of our methods, we introduce several non-linear kernel functions. Thus, contribution of this thesis is twofold: kernel functions for structured data that are used to take advantage of various non-vectorial data representations and the preference learning algorithms that are suitable for different tasks, namely efficient learning of preference relations, learning with large amount of training data, and semi-supervised preference learning. Proposed kernel-based algorithms and kernels are applied to the parse ranking task in natural language processing, document ranking in information retrieval, and remote homology detection in bioinformatics domain. Training of kernel-based ranking algorithms can be infeasible when the size of the training set is large. This problem is addressed by proposing a preference learning algorithm whose computation complexity scales linearly with the number of training data points. We also introduce sparse approximation of the algorithm that can be efficiently trained with large amount of data. For situations when small amount of labeled data but a large amount of unlabeled data is available, we propose a co-regularized preference learning algorithm. To conclude, the methods presented in this thesis address not only the problem of the efficient training of the algorithms but also fast regularization parameter selection, multiple output prediction, and cross-validation. Furthermore, proposed algorithms lead to notably better performance in many preference learning tasks considered.
Resumo:
In the literature on housing market areas, different approaches can be found to defining them, for example, using travel-to-work areas and, more recently, making use of migration data. Here we propose a simple exercise to shed light on which approach performs better. Using regional data from Catalonia, Spain, we have computed housing market areas with both commuting data and migration data. In order to decide which procedure shows superior performance, we have looked at uniformity of prices within areas. The main finding is that commuting algorithms present more homogeneous areas in terms of housing prices.
Resumo:
The stochastic convergence amongst Mexican Federal entities is analyzed in panel data framework. The joint consideration of cross-section dependence and multiple structural breaks is required to ensure that the statistical inference is based on statistics with good statistical properties. Once these features are accounted for, evidence in favour of stochastic convergence is found. Since stochastic convergence is a necessary, yet insufficient condition for convergence as predicted by economic growth models, the paper also investigates whether-convergence process has taken place. We found that the Mexican states have followed either heterogeneous convergence patterns or divergence process throughout the analyzed period.