963 resultados para Stochastic Approximation Algorithms
Resumo:
Stochastic volatility models are of fundamental importance to the pricing of derivatives. One of the most commonly used models of stochastic volatility is the Heston Model in which the price and volatility of an asset evolve as a pair of coupled stochastic differential equations. The computation of asset prices and volatilities involves the simulation of many sample trajectories with conditioning. The problem is treated using the method of particle filtering. While the simulation of a shower of particles is computationally expensive, each particle behaves independently making such simulations ideal for massively parallel heterogeneous computing platforms. In this paper, we present our portable Opencl implementation of the Heston model and discuss its performance and efficiency characteristics on a range of architectures including Intel cpus, Nvidia gpus, and Intel Many-Integrated-Core (mic) accelerators.
Resumo:
The theory of Varley and Cumberbatch [l] giving the intensity of discontinuities in the normal derivatives of the dependent variables at a wave front can be deduced from the more general results of Prasad which give the complete history of a disturbance not only at the wave front but also within a short distance behind the wave front. In what follows we omit the index M in Eq. (2.25) of Prasad [2].
Resumo:
This paper addresses an output feedback control problem for a class of networked control systems (NCSs) with a stochastic communication protocol. Under the scenario that only one sensor is allowed to obtain the communication access at each transmission instant, a stochastic communication protocol is first defined, where the communication access is modelled by a discrete-time Markov chain with partly unknown transition probabilities. Secondly, by use of a network-based output feedback control strategy and a time-delay division method, the closed-loop system is modeled as a stochastic system with multi time-varying delays, where the inherent characteristic of the network delay is well considered to improve the control performance. Then, based on the above constructed stochastic model, two sufficient conditions are derived for ensuring the mean-square stability and stabilization of the system under consideration. Finally, two examples are given to show the effectiveness of the proposed method.
Resumo:
The time–history of the performance of a system is treated as a stochastic corrective process, in which deterioration due to aging is counteracted at brief maintenance checks. Using a diffusion approximation for the deterioration, simple models are proposed for describing maintenance either by component replacement or by performance restoration. Equilibrium solutions of the models show that the performance has a probability distribution with exponential tails: the uncritical use of Gaussians can grossly underestimate the probability of poor performance. The proposed models are supported by recent observational evidence on aircraft track-keeping errors, which are shown to follow the modified exponential distribution derived here. The analysis also brings out the relation between the deterioration characteristics of the system and the intensity of the maintenance effort required to achieve a given performance reliability.
Resumo:
In [8], we recently presented two computationally efficient algorithms named B-RED and P-RED for random early detection. In this letter, we present the mathematical proof of convergence of these algorithms under general conditions to local minima.
Resumo:
A fully implicit integration method for stochastic differential equations with significant multiplicative noise and stiffness in both the drift and diffusion coefficients has been constructed, analyzed and illustrated with numerical examples in this work. The method has strong order 1.0 consistency and has user-selectable parameters that allow the user to expand the stability region of the method to cover almost the entire drift-diffusion stability plane. The large stability region enables the method to take computationally efficient time steps. A system of chemical Langevin equations simulated with the method illustrates its computational efficiency.
Resumo:
The integration of stochastic wind power has accentuated a challenge for power system stability assessment. Since the power system is a time-variant system under wind generation fluctuations, pure time-domain simulations are difficult to provide real-time stability assessment. As a result, the worst-case scenario is simulated to give a very conservative assessment of system transient stability. In this study, a probabilistic contingency analysis through a stability measure method is proposed to provide a less conservative contingency analysis which covers 5-min wind fluctuations and a successive fault. This probabilistic approach would estimate the transfer limit of a critical line for a given fault with stochastic wind generation and active control devices in a multi-machine system. This approach achieves a lower computation cost and improved accuracy using a new stability measure and polynomial interpolation, and is feasible for online contingency analysis.
An FETI-preconditioned conjuerate gradient method for large-scale stochastic finite element problems
Resumo:
In the spectral stochastic finite element method for analyzing an uncertain system. the uncertainty is represented by a set of random variables, and a quantity of Interest such as the system response is considered as a function of these random variables Consequently, the underlying Galerkin projection yields a block system of deterministic equations where the blocks are sparse but coupled. The solution of this algebraic system of equations becomes rapidly challenging when the size of the physical system and/or the level of uncertainty is increased This paper addresses this challenge by presenting a preconditioned conjugate gradient method for such block systems where the preconditioning step is based on the dual-primal finite element tearing and interconnecting method equipped with a Krylov subspace reusage technique for accelerating the iterative solution of systems with multiple and repeated right-hand sides. Preliminary performance results on a Linux Cluster suggest that the proposed Solution method is numerically scalable and demonstrate its potential for making the uncertainty quantification Of realistic systems tractable.
Resumo:
We present robust joint nonlinear transceiver designs for multiuser multiple-input multiple-output (MIMO) downlink in the presence of imperfections in the channel state information at the transmitter (CSIT). The base station (BS) is equipped with multiple transmit antennas, and each user terminal is equipped with one or more receive antennas. The BS employs Tomlinson-Harashima precoding (THP) for interuser interference precancellation at the transmitter. We consider robust transceiver designs that jointly optimize the transmit THP filters and receive filter for two models of CSIT errors. The first model is a stochastic error (SE) model, where the CSIT error is Gaussian-distributed. This model is applicable when the CSIT error is dominated by channel estimation error. In this case, the proposed robust transceiver design seeks to minimize a stochastic function of the sum mean square error (SMSE) under a constraint on the total BS transmit power. We propose an iterative algorithm to solve this problem. The other model we consider is a norm-bounded error (NBE) model, where the CSIT error can be specified by an uncertainty set. This model is applicable when the CSIT error is dominated by quantization errors. In this case, we consider a worst-case design. For this model, we consider robust (i) minimum SMSE, (ii) MSE-constrained, and (iii) MSE-balancing transceiver designs. We propose iterative algorithms to solve these problems, wherein each iteration involves a pair of semidefinite programs (SDPs). Further, we consider an extension of the proposed algorithm to the case with per-antenna power constraints. We evaluate the robustness of the proposed algorithms to imperfections in CSIT through simulation, and show that the proposed robust designs outperform nonrobust designs as well as robust linear transceiver designs reported in the recent literature.
Resumo:
Dynamic systems involving convolution integrals with decaying kernels, of which fractionally damped systems form a special case, are non-local in time and hence infinite dimensional. Straightforward numerical solution of such systems up to time t needs O(t(2)) computations owing to the repeated evaluation of integrals over intervals that grow like t. Finite-dimensional and local approximations are thus desirable. We present here an approximation method which first rewrites the evolution equation as a coupled in finite-dimensional system with no convolution, and then uses Galerkin approximation with finite elements to obtain linear, finite-dimensional, constant coefficient approximations for the convolution. This paper is a broad generalization, based on a new insight, of our prior work with fractional order derivatives (Singh & Chatterjee 2006 Nonlinear Dyn. 45, 183-206). In particular, the decaying kernels we can address are now generalized to the Laplace transforms of known functions; of these, the power law kernel of fractional order differentiation is a special case. The approximation can be refined easily. The local nature of the approximation allows numerical solution up to time t with O(t) computations. Examples with several different kernels show excellent performance. A key feature of our approach is that the dynamic system in which the convolution integral appears is itself approximated using another system, as distinct from numerically approximating just the solution for the given initial values; this allows non-standard uses of the approximation, e. g. in stability analyses.
Resumo:
Diffuse large B-cell lymphoma (DLBCL) is the most common of the non-Hodgkin lymphomas. As DLBCL is characterized by heterogeneous clinical and biological features, its prognosis varies. To date, the International Prognostic Index has been the strongest predictor of outcome for DLBCL patients. However, no biological characters of the disease are taken into account. Gene expression profiling studies have identified two major cell-of-origin phenotypes in DLBCL with different prognoses, the favourable germinal centre B-cell-like (GCB) and the unfavourable activated B-cell-like (ABC) phenotypes. However, results of the prognostic impact of the immunohistochemically defined GCB and non-GCB distinction are controversial. Furthermore, since the addition of the CD20 antibody rituximab to chemotherapy has been established as the standard treatment of DLBCL, all molecular markers need to be evaluated in the post-rituximab era. In this study, we aimed to evaluate the predictive value of immunohistochemically defined cell-of-origin classification in DLBCL patients. The GCB and non-GCB phenotypes were defined according to the Hans algorithm (CD10, BCL6 and MUM1/IRF4) among 90 immunochemotherapy- and 104 chemotherapy-treated DLBCL patients. In the chemotherapy group, we observed a significant difference in survival between GCB and non-GCB patients, with a good and a poor prognosis, respectively. However, in the rituximab group, no prognostic value of the GCB phenotype was observed. Likewise, among 29 high-risk de novo DLBCL patients receiving high-dose chemotherapy and autologous stem cell transplantation, the survival of non-GCB patients was improved, but no difference in outcome was seen between GCB and non-GCB subgroups. Since the results suggested that the Hans algorithm was not applicable in immunochemotherapy-treated DLBCL patients, we aimed to further focus on algorithms based on ABC markers. We examined the modified activated B-cell-like algorithm based (MUM1/IRF4 and FOXP1), as well as a previously reported Muris algorithm (BCL2, CD10 and MUM1/IRF4) among 88 DLBCL patients uniformly treated with immunochemotherapy. Both algorithms distinguished the unfavourable ABC-like subgroup with a significantly inferior failure-free survival relative to the GCB-like DLBCL patients. Similarly, the results of the individual predictive molecular markers transcription factor FOXP1 and anti-apoptotic protein BCL2 have been inconsistent and should be assessed in immunochemotherapy-treated DLBCL patients. The markers were evaluated in a cohort of 117 patients treated with rituximab and chemotherapy. FOXP1 expression could not distinguish between patients, with favourable and those with poor outcomes. In contrast, BCL2-negative DLBCL patients had significantly superior survival relative to BCL2-positive patients. Our results indicate that the immunohistochemically defined cell-of-origin classification in DLBCL has a prognostic impact in the immunochemotherapy era, when the identifying algorithms are based on ABC-associated markers. We also propose that BCL2 negativity is predictive of a favourable outcome. Further investigational efforts are, however, warranted to identify the molecular features of DLBCL that could enable individualized cancer therapy in routine patient care.
Resumo:
This article analyzes the effect of devising a new failure envelope by the combination of the most commonly used failure criteria for the composite laminates, on the design of composite structures. The failure criteria considered for the study are maximum stress and Tsai-Wu criteria. In addition to these popular phenomenological-based failure criteria, a micromechanics-based failure criterion called failure mechanism-based failure criterion is also considered. The failure envelopes obtained by these failure criteria are superimposed over one another and a new failure envelope is constructed based on the lowest absolute values of the strengths predicted by these failure criteria. Thus, the new failure envelope so obtained is named as most conservative failure envelope. A minimum weight design of composite laminates is performed using genetic algorithms. In addition to this, the effect of stacking sequence on the minimum weight of the laminate is also studied. Results are compared for the different failure envelopes and the conservative design is evaluated, with respect to the designs obtained by using only one failure criteria. The design approach is recommended for structures where composites are the key load-carrying members such as helicopter rotor blades.
Resumo:
A considerable amount of work has been dedicated on the development of analytical solutions for flow of chemical contaminants through soils. Most of the analytical solutions for complex transport problems are closed-form series solutions. The convergence of these solutions depends on the eigen values obtained from a corresponding transcendental equation. Thus, the difficulty in obtaining exact solutions from analytical models encourages the use of numerical solutions for the parameter estimation even though, the later models are computationally expensive. In this paper a combination of two swarm intelligence based algorithms are used for accurate estimation of design transport parameters from the closed-form analytical solutions. Estimation of eigen values from a transcendental equation is treated as a multimodal discontinuous function optimization problem. The eigen values are estimated using an algorithm derived based on glowworm swarm strategy. Parameter estimation of the inverse problem is handled using standard PSO algorithm. Integration of these two algorithms enables an accurate estimation of design parameters using closed-form analytical solutions. The present solver is applied to a real world inverse problem in environmental engineering. The inverse model based on swarm intelligence techniques is validated and the accuracy in parameter estimation is shown. The proposed solver quickly estimates the design parameters with a great precision.
Resumo:
We explore an isoparametric interpolation of total quaternion for geometrically consistent, strain-objective and path-independent finite element solutions of the geometrically exact beam. This interpolation is a variant of the broader class known as slerp. The equivalence between the proposed interpolation and that of relative rotation is shown without any recourse to local bijection between quaternions and rotations. We show that, for a two-noded beam element, the use of relative rotation is not mandatory for attaining consistency cum objectivity and an appropriate interpolation of total rotation variables is sufficient. The interpolation of total quaternion, which is computationally more efficient than the one based on local rotations, converts nodal rotation vectors to quaternions and interpolates them in a manner consistent with the character of the rotation manifold. This interpolation, unlike the additive interpolation of total rotation, corresponds to a geodesic on the rotation manifold. For beam elements with more than two nodes, however, a consistent extension of the proposed quaternion interpolation is difficult. Alternatively, a quaternion-based procedure involving interpolation of relative rotations is proposed for such higher order elements. We also briefly discuss a strategy for the removal of possible singularity in the interpolation of quaternions, proposed in [I. Romero, The interpolation of rotations and its application to finite element models of geometrically exact rods, Comput. Mech. 34 (2004) 121–133]. The strain-objectivity and path-independence of solutions are justified theoretically and then demonstrated through numerical experiments. This study, being focused only on the interpolation of rotations, uses a standard finite element discretization, as adopted by Simo and Vu-Quoc [J.C. Simo, L. Vu-Quoc, A three-dimensional finite rod model part II: computational aspects, Comput. Methods Appl. Mech. Engrg. 58 (1986) 79–116]. The rotation update is achieved via quaternion multiplication followed by the extraction of the rotation vector. Nodal rotations are stored in terms of rotation vectors and no secondary storages are required.