842 resultados para Stiles-Crawford effect, accommodation, myopia, psychophysical technique, multifocal electroretinogram, aberrations, accommodative lag
Resumo:
We present a microfluidic epithelial wound-healing assay that allows characterization of the effect of hepatocyte growth factor (HGF) on the regeneration of alveolar epithelium using a flow-focusing technique to create a regular wound in the epithelial monolayer. The phenotype of the epithelial cell was characterized using immunostaining for tight junction (TJ) proteins and transmission electron micrographs (TEMs) of cells cultured in the microfluidic system, a technique that is reported here for the first time. We demonstrate that alveolar epithelial cells cultured in a microfluidic environment preserve their phenotype before and after wounding. In addition, we report a wound-healing benefit induced by addition of HGF to the cell culture medium (19.2 vs. 13.5 μm h(-1) healing rate).
Resumo:
The effects of cold spray coating and substrate surface preparation on crack initiation under cyclic loading have been studied on Al2024 alloy specimens. Commercially pure (CP) aluminum feedstock powder has been deposited on Al2024-T351 samples using a cold-spray coating technique known as high velocity particle consolidation. Substrate specimens were prepared by surface grit blasting or shot peening prior to coating. The fatigue behavior of both coated and uncoated specimens was then tested under rotating bend conditions at two stress levels, 180 MPa and 210 MPa. Scanning electron microscopy was used to analyze failure surfaces and identify failure mechanisms. The results indicate that the fatigue strength was significantly improved on average, up to 50% at 180 MPa and up to 38% at 210 MPa, by the deposition of the cold-sprayed CP-Al coatings. Coated specimens first prepared by glass bead grit blasting experienced the largest average increase in fatigue life over bare specimens. The results display a strong dependency of the fatigue strength on the surface preparation and cold spray parameters
Resumo:
Preliminary data have suggested that taurolidine may bear promising disinfectant properties for the therapy of bacterial infections. However, at present, the potential antibacterial effect of taurolidine on the supragingival plaque biofilm is unknown. To evaluate the antibacterial effect of taurolidine on the supragingival plaque biofilm using the vital fluorescence technique and to compare it with the effect of NaCl and chlorhexidine (CHX), 18 subjects had to refrain from all mechanical and chemical hygiene measures for 24 h. A voluminous supragingival plaque sample was taken from the buccal surfaces of the lower molars and wiped on an objective slide. The sample was then divided into three equal parts and mounted with one of the three test or control preparations (a) NaCl, (b) taurolidine 2% and (c) CHX 0.2%. After a reaction time of 2 min, the test solutions were sucked of. Subsequently, the plaque biofilm was stained with fluorescence dye and vitality of the plaque flora was evaluated under the fluorescence microscope (VF%). Plaque samples treated with NaCl showed a mean VF of 82.42 ± 6.04%. Taurolidine affected mean VF with 47.57 ± 16.60% significantly (p < 0.001, paired t test). The positive control CHX showed the lowest mean VF values (34.41 ± 14.79%; p < 0.001 compared to NaCl, p = 0.017 compared to taurolidine). Taurolidine possesses a significant antibacterial effect on the supragingival plaque biofilm which was, however, not as pronounced as that of CHX.
Resumo:
Hydrogels are composed of cross-linked networks of hydrophilic polymers that are biocompatible due to their high water content. Mass transfer through hydrogels has been suggested as an effective method of drug delivery, specifically in degradable polymers to minimize lasting effects within the body. Diffusion of small molecules in poly (ethylene glycol) diacrylate (PEG-DA) and dextran methacrylate (dex-MA) hydrogels was characterized in a microfluidic device and by complementary techniques. Microfluidic devices were prepared by crosslinking a formulation of hydrogel and photo-initiator, with and without visible dye, using photolithography to define a central microchannel. Channel sizes within the devices were approximately 600 ¿m to simulate vessels within the body. The microfluidic technique allows for both image and effluent analyses. To visualize the diffusive behavior within the dextran hydrogel, methylene blue and sulforhodamine 101 dyes were used in both elution and uptake experiments. Three analysis techniques for measuring diffusion coefficients were used to quantify the diffusion of solute in the hydrogel, including optical microscopy, characterization of device effluent, and NMR analyses. The optical microscopy technique analyzes images of the dye diffusion captured by a stereomicroscope to generate dye concentration v. position profiles. The data was fit to a diffusion model to determine diffusion coefficients and the dye release profile. In a typical elution experiment, aqueous solution is pumped through the microchannel and dye diffuses out of the hydrogel and into the aqueous phase. During elution, images are taken at regular time intervals and the effluent was collected. Analysis of the device effluent was performed using ultraviolet-visible (UV/Vis) spectroscopy to determine the effluent dye concentration and thus a short-time diffusion coefficient. Nuclear magnetic resonance (NMR) was used to determine a free diffusion coefficient of molecules in hydrogel without the effect of a concentration gradient. Diffusion coefficients for methylene blue and sulforhodamine 101 dyes in dex-MA hydrogel calculated using the three analysis methods all agree well. It was determined that utilizing a combination of the three techniques offers greater insight into molecular diffusion in hydrogels than employing each technique individually. The use of the same microfluidic devices used to measure diffusion is explored in the use of studying the degradation of dex-MA hydrogels. By combining what is known about the degradation rate in regards to the effect of pH and crosslinking and the ability to use a dye solution in contrast to establish the hydrogel boundaries could be a novel approach to studying hydrogel degradation.
Resumo:
One of the aims of this project was to understand the way in which external environment or situation affects children's behaviour. Emotional experiences are developed and acquired under the influence of the environment, and a good family relationship is necessary for young people to grow, develop and socialise at all ages. Stress causes specific negative emotions, including concern, anxiety, sorrow and hostility. A pathologic environment in childhood forces the development of special abilities, both creative and destructive, It supports the development of an abnormal state of mind in which the usual relations between body and mind, reality and imagination, knowledge and memory are changed. Here the environment considered was that of the war and aggression in Bosnia & Herzegovina, where children, particularly those from Podrinje, witnessed arrests, killing, deforming and slaughtering of adults and children, in many cases members of their immediate families. Sehovic analysed the content of drawings by children exposed to various degrees of stress, to discover how these indicate various degrees of stress with the aim of using these as a projective technique in diagnostic work with children. The sample included around 600 children expelled from their homes, of both sexes aged between 6 and 12.
Resumo:
Laser tissue welding and soldering is being increasingly used in the clinical setting for defined surgical procedures. The exact induced changes responsible for tensile strength are not yet fully investigated. To further improve the strength of the bonding, a better understanding of the laser impact at the subcellular level is necessary. The goal of this study was to analyze whether the effect of laser irradiation on covalent bonding in pure collagen using irradiances typically applied for tissue soldering. Pure rabbit and equine type I collagen were subjected to laser irradiation. In the first part of the study, rabbit and equine collagen were compared using identical laser and irradiation settings. In the second part of the study, equine collagen was irradiated at increasing laser powers. Changes in covalent bonding were studied indirectly using the sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) technique. Tensile strengths of soldered membranes were measured with a calibrated tensile force gauge. In the first experiment, no differences between the species-specific collagen bands were noted, and no changes in banding were found on SDS-PAGE after laser irradiation. In the second experiment, increasing laser irradiation power showed no effect on collagen banding in SDS-PAGE. Finally, the laser tissue soldering of pure collagen membranes showed virtually no determinable tensile strength. Laser irradiation of pure collagen at typical power settings and exposure times generally used in laser tissue soldering does not induce covalent bonding between collagen molecules. This is true for both rabbit and equine collagen proveniences. Furthermore, soldering of pure collagen membranes without additional cellular components does not achieve the typical tensile strength reported in native, cell-rich tissues. This study is a first step in a better understanding of laser impact at the molecular level and might prove useful in engineering of combined collagen-soldering matrix membranes for special laser soldering applications.
Resumo:
The purpose of this study was to acquire information about the effect of an antibacterial and biodegradable poly-L-lactide (PLLA) coated titanium plate osteosynthesis on local infection resistance. For our in vitro and in vivo experiments, we used six-hole AO DC minifragment titanium plates. The implants were coated with biodegradable, semiamorphous PLLA (coating about 30 microm thick). This acted as a carrier substance to which either antibiotics or antiseptics were added. The antibiotic we applied was a combination of Rifampicin and fusidic acid; the antiseptic was a combination of Octenidin and Irgasan. This produced the following groups: Group I: six-hole AO DC minifragment titanium plate without PLLA; Group II: six-hole AO DC minifragment titanium plate with PLLA without antibiotics/antiseptics; Group III: six-hole AO DC minifragment titanium plate with PLLA + 3% Rifampicin and 7% fusidic acid; Group IV: six-hole AO DC minifragment titanium plate with PLLA + 2% Octenidin and 8% Irgasan. In vitro, we investigated the degradation and the release of the PLLA coating over a period of 6 weeks, the bactericidal efficacy of antibiotics/antiseptics after their release from the coating and the bacterial adhesion of Staphylococcus aureus to the implants. In vivo, we compared the infection rates in white New Zealand rabbits after titanium plate osteosynthesis of the tibia with or without antibacterial coating after local percutaneous bacterial inoculations at different concentrations (2 x 10(5)-2 x 10(8)): The plate, the contaminated soft tissues and the underlying bone were removed under sterile conditions after 28 days and quantitatively evaluated for bacterial growth. A stepwise experimental design with an "up-and-down" dosage technique was used to adjust the bacterial challenge in the area of the ID50 (50% infection dose). Statistical evaluation of the differences between the infection rates of both groups was performed using the two-sided Fisher exact test (p < 0.05). Over a period of 6 weeks, a continuous degradation of the PLLA coating of 13%, on average, was seen in vitro in 0.9% NaCl solution. The elution tests on titanium implants with antibiotic or antiseptic coatings produced average release values of 60% of the incorporated antibiotic or 62% of the incorporated antiseptic within the first 60 min. This was followed by a much slower, but nevertheless continuous, release of the incorporated antibiotic and antiseptic over days and weeks. At the end of the test period of 42 days, 20% of the incorporated antibiotic and 15% of the incorporated antiseptic had not yet been released from the coating. The antibacterial effect of the antibiotic/antiseptic is not lost by integrating it into the PLLA coating. The overall infection rate in the in vivo investigation was 50%. For Groups I and II the infection rate was both 83% (10 of 12 animals). In Groups III and IV with antibacterial coating, the infection rate was both 17% (2 of 12 animals). The ID50 in the antibacterial coated Groups III and IV was recorded as 1 x 10(8) CFU, whereas the ID50 values in the Groups I and II without antibacterial coating were a hundred times lower at 1 x 10(6) CFU, respectively. The difference between the groups with and without antibacterial coating was statistically significant (p = 0.033). Using an antibacterial biodegradable PLLA coating on titanium plates, a significant reduction of infection rate in an in vitro and in vivo investigation could be demonstrated. For the first time, to our knowledge, we were able to show, under standardized and reproducible conditions, that an antiseptic coating leads to the same reduction in infection rate as an antibiotic coating. Taking the problem of antibiotic-induced bacterial resistance into consideration, we thus regard the antiseptic coating, which shows the same level of effectiveness, as advantageous.
Resumo:
PURPOSE: The aim of this study was to investigate the effect of magnetization transfer on multislice T(1) and T(2) measurements of articular cartilage. MATERIALS AND METHODS: A set of phantoms with different concentrations of collagen and contrast agent (Gd-DTPA(2-)) were used for the in vitro study. A total of 20 healthy knees were used for the in vivo study. T(1) and T(2) measurements were performed using fast-spin-echo inversion-recovery (FSE-IR) sequence and multi-spin-echo (MSE) sequence, respectively, in both in vitro and in vivo studies. We investigated the difference in T(1) and T(2) values between that measured by single-slice acquisition and that measured by multislice acquisition. RESULTS: Regarding T(1) measurement, a large drop of T(1) in all slices and also a large interslice variation in T(1) were observed when multislice acquisition was used. Regarding T(2) measurement, a substantial drop of T(2) in all slices was observed; however, there was no apparent interslice variation when multislice acquisition was used. CONCLUSION: This study demonstrated that the adaptation of multislice acquisition technique for T(1) measurement using FSE-IR methodology is difficult and its use for clinical evaluation is problematic. In contrast, multislice acquisition for T(2) measurement using MSE was clinically applicable if inaccuracies caused by multislice acquisition were taken into account. J. Magn. Reson. Imaging 2007;26:109-117. (c) 2007 Wiley-Liss, Inc.
Resumo:
Behavioural and cortisol responses of calves were used as indicators of pain to assess short- and long-term effects of bloodless castration methods with and without local anaesthesia. Seventy calves, aged 21-28 days, were control handled (20) or castrated using the Burdizzo (25) or rubber ring technique (25). Either 10 mL lidocaine or NaCl were distributed in both spermatic cords and the scrotal neck. The plasma cortisol response was recorded for 72 h, and behavioural and clinical traits monitored over a three month period. Local anaesthesia reduced the level of indicators of acute pain after both the Burdizzo and rubber ring techniques. It did not, however, result in a totally painless castration. As there was evidence of chronic pain lasting for several weeks after rubber ring castration, the Burdizzo method is judged to be preferable to the rubber ring technique.
Resumo:
A new technique was evaluated to identify changes in bone metabolism directly at high sensitivity through isotopic labeling of bone Ca. Six women with low BMD were labeled with 41Ca up to 700 days and treated for 6 mo with risedronate. Effect of treatment on bone could be identified using 41Ca after 4-8 wk in each individual. INTRODUCTION: Isotopic labeling of bone using 41Ca, a long-living radiotracer, has been proposed as an alternative approach for measuring changes in bone metabolism to overcome current limitations of available techniques. After isotopic labeling of bone, changes in urinary 41Ca excretion reflect changes in bone Ca balance. The aim of this study was to validate this new technique against established measures. Changes in bone Ca balance were induced by giving a bisphosphonate. MATERIALS AND METHODS: Six postmenopausal women with diagnosed osteopenia/osteoporosis received a single oral dose of 100 nCi 41Ca for skeleton labeling. Urinary 41Ca/40Ca isotope ratios were monitored by accelerator mass spectrometry up to 700 days after the labeling process. Subjects received 35 mg risedronate per week for 6 mo. Effect of treatment was monitored using the 41Ca signal in urine and parallel measurements of BMD by DXA and biochemical markers of bone metabolism in urine and blood. RESULTS: Positive response to treatment was confirmed by BMD measurements, which increased for spine by +3.0% (p = 0.01) but not for hip. Bone formation markers decreased by -36% for bone alkaline phosphatase (BALP; p = 0.002) and -59% for procollagen type I propeptides (PINP; p = 0.001). Urinary deoxypyridinoline (DPD) and pyridinoline (PYD) were reduced by -21% (p = 0.019) and -23% (p = 0.009), respectively, whereas serum and urinary carboxy-terminal teleopeptides (CTXs) were reduced by -60% (p = 0.001) and -57.0% (p = 0.001), respectively. Changes in urinary 41Ca excretion paralleled findings for conventional techniques. The urinary 41Ca/40Ca isotope ratio was shifted by -47 +/- 10% by the intervention. Population pharmacokinetic analysis (NONMEM) of the 41Ca data using a linear three-compartment model showed that bisphosphonate treatment reduced Ca transfer rates between the slowly exchanging compartment (bone) and the intermediate fast exchanging compartment by 56% (95% CI: 45-58%). CONCLUSIONS: Isotopic labeling of bone using 41Ca can facilitate human trials in bone research by shortening of intervention periods, lowering subject numbers, and having easier conduct of cross-over studies compared with conventional techniques.
Resumo:
BACKGROUND: The interrupter technique is increasingly used in preschool children to assess airway resistance (Rint). Use of a bacterial filter is essential for prevention of cross-infection in a clinical setting. It is not known how large an effect this extra resistance and compliance exert upon interrupter measurements, especially on obstructive airways and in smaller children. We aim to determine the contribution of the filter to Rint, in a sample of children attending lung function testing at an asthma clinic. METHODS: Interrupter measurements were performed according to ATS/ERS guidelines during quiet normal breathing at an expiratory flow trigger of 200 ml s(-1), with the child seated upright with cheeks supported and wearing a nose clip. A minimum of 10 interrupter measurements was made with and without a bacterial filter. Spirometric and plethysmographic tests were also performed. RESULTS: A small but significant difference (0.12 (95% CI 0.06-0.17) kPa s L(-1), P = 0.0002) with 2x SD of 0.34 kPa s L(-1) was observed between Rint with and without filter in 39 children, with a large spread. This difference was not dependent on Rint magnitude, age or height, nor on lung function parameters (effective resistance, forced expiratory volume in 1 sec, and maximal expiratory flow at 50% of expired vital capacity). CONCLUSIONS: A bacterial filter causes a small difference but is not clinically significant, with a wide spread comparable to the variability of the technique and recommended cut-offs for assessing repeatability and bronchodilation. Age, height or severity of obstruction need not be corrected for in general.
Resumo:
STUDY DESIGN: In vitro testing of vertebroplasty techniques including pulsed jet-lavage for fat and marrow removal in human cadaveric lumbar and thoracic vertebrae. OBJECTIVE: To develop jet-lavage techniques for vertebroplasty and investigate their effect on cement distribution, injection forces, and fat embolism. SUMMARY OF BACKGROUND DATA: The main complications of cement vertebroplasty are cement leakage and pulmonary fat embolism, which can have fatal consequences and are difficult to prevent reliably by current vertebroplasty techniques. METHODS: Twenty-four vertebrae (Th8-L04) from 5 osteoporotic cadaver spines were grouped in triplets depending on bone mineral density (BMD). Before polymethylmethacrylate (PMMA) vertebroplasty, a pulsatile jet-lavage for removal of intertrabecular fat and bone marrow was performed in 2 groups with 8 specimens each, performing radial and axial irrigation from the biopsy needles. One hundred mL of Ringer solution were injected through 1 pedicle and regained by low vacuum via the contralateral pedicle. Eight control vertebrae were not irrigated. All specimens underwent standardized PMMA cement augmentation injecting 20% of the vertebral volume. Injection forces, cement distribution, and extravasations were quantified. RESULTS: All irrigation solution could be retrieved with the vacuum applied. A Kruskal-Wallis test revealed significantly higher injection forces of the control group as compared with the irrigated groups (P = 0.021). Dilatation of the syringe at forces above 300 N occurred in 75% of the untreated compared with 12.5% of the lavaged specimens. CT distribution analysis showed more homogenous cement distribution of the cement and significantly less extravasation in the irrigated specimens. CONCLUSION: The developed lavage technique for vertebroplasty showed to be feasible and reproducible. The reduction of injection forces would allow the use of more viscous PMMA cement lowering the risk for cement embolization and results in a safer procedure. The wash-out of bone marrow and the possible reduction of pulmonary fat embolism have to be verified with in vivo models.
Resumo:
Hall-effect thrusters (HETs) are compact electric propulsion devices with high specific impulse used for a variety of space propulsion applications. HET technology is well developed but the electron properties in the discharge are not completely understood, mainly due to the difficulty involved in performing accurate measurements in the discharge. Measurements of electron temperature and density have been performed using electrostatic probes, but presence of the probes can significantly disrupt thruster operation, and thus alter the electron temperature and density. While fast-probe studies have expanded understanding of HET discharges, a non-invasive method of measuring the electron temperature and density in the plasma is highly desirable. An alternative to electrostatic probes is a non-perturbing laser diagnostic technique that measures Thomson scattering from the plasma. Thomson scattering is the process by which photons are elastically scattered from the free electrons in a plasma. Since the electrons have thermal energy their motion causes a Doppler shift in the scattered photons that is proportional to their velocity. Like electrostatic probes, laser Thomson scattering (LTS) can be used to determine the temperature and density of free electrons in the plasma. Since Thomson scattering measures the electron velocity distribution function directly no assumptions of the plasma conditions are required, allowing accurate measurements in anisotropic and non-Maxwellian plasmas. LTS requires a complicated measurement apparatus, but has the potential to provide accurate, non-perturbing measurements of electron temperature and density in HET discharges. In order to assess the feasibility of LTS diagnostics on HETs non-invasive measurements of electron temperature and density in the near-field plume of a Hall thruster were performed using a custom built laser Thomson scattering diagnostic. Laser measurements were processed using a maximum likelihood estimation method and results were compared to conventional electrostatic double probe measurements performed at the same thruster conditions. Electron temperature was found to range from approximately 1 – 40 eV and density ranged from approximately 1.0 x 1017 m-3 to 1.3 x 1018 m-3 over discharge voltages from 250 to 450 V and mass flow rates of 40 to 80 SCCM using xenon propellant.
Resumo:
Emerging nanogenerators have attracted the attention of the research community, focusing on energy generation using piezoelectric nanomaterials. Nanogenerators can be utilized for powering NEMS/MEMS devices. Understanding the piezoelectric properties of ZnO one-dimensional materials such as ZnO nanobelts (NBs) and Nanowires (NWs) can have a significant impact on the design of new devices. The goal of this dissertation is to study the piezoelectric properties of one-dimensional ZnO nanostructures both experimentally and theoretically. First, the experimental procedure for producing the ZnO nanostructures is discussed. The produced ZnO nanostructures were characterized using an in-situ atomic force microscope and a piezoelectric force microscope. It is shown that the electrical conductivity of ZnO NBs is a function of applied mechanical force and its crystalline structure. This phenomenon was described in the context of formation of an electric field due to the piezoelectric property of ZnO NBs. In the PFM studies, it was shown that the piezoelectric response of the ZnO NBs depends on their production method and presence of defects in the NB. Second, a model was proposed for making nanocomposite electrical generators based on ZnO nanowires. The proposed model has advantages over the original configuration of nanogenerators which uses an AFM tip for bending the ZnO NWs. Higher stability of the electric source, capability for producing larger electric fields, and lower production costs are advantages of this configuration. Finally, piezoelectric properties of ZnO NBs were simulated using the molecular dynamics (MD) technique. The size-scale effect on piezoelectric properties of ZnO NBs was captured, and it is shown that the piezoelectric coefficient of ZnO NBs decreases by increasing their lateral dimensions. This phenomenon is attributed to the surface charge redistribution and compression of unit cells that are placed on the outer shell of ZnO NBs.
Resumo:
The South Florida Water Management District (SFWMD) manages and operates numerous water control structures that are subject to scour. In an effort to reduce scour downstream of these gated structures, laboratory experiments were performed to investigate the effect of active air-injection downstream of the terminal structure of a gated spillway on the depth of the scour hole. A literature review involving similar research revealed significant variables such as the ratio of headwater-to-tailwater depths, the diffuser angle, sediment uniformity, and the ratio of air-to-water volumetric discharge values. The experimental design was based on the analysis of several of these non-dimensional parameters. Bed scouring at stilling basins downstream of gated spillways has been identified as posing a serious risk to the spillway’s structural stability. Although this type of scour has been studied in the past, it continues to represent a real threat to water control structures and requires additional attention. A hydraulic scour channel comprised of a head tank, flow straightening section, gated spillway, stilling basin, scour section, sediment trap, and tail-tank was used to further this analysis. Experiments were performed in a laboratory channel consisting of a 1:30 scale model of the SFWMD S65E spillway structure. To ascertain the feasibility of air injection for scour reduction a proof-of-concept study was performed. Experiments were conducted without air entrainment and with high, medium, and low air entrainment rates for high and low headwater conditions. For the cases with no air entrainment it was found that there was excessive scour downstream of the structure due to a downward roller formed upon exiting the downstream sill of the stilling basin. When air was introduced vertically just downstream of, and at the same level as, the stilling basin sill, it was found that air entrainment does reduce scour depth by up to 58% depending on the air flow rate, but shifts the deepest scour location to the sides of the channel bed instead of the center. Various hydraulic flow conditions were tested without air injection to verify which scenario caused more scour. That scenario, uncontrolled free, in which water does not contact the gate and the water elevation in the stilling basin is lower than the spillway crest, would be used for the remainder of experiments testing air injection. Various air flow rates, diffuser elevations, air hole diameters, air hole spacings, diffuser angles and widths were tested in over 120 experiments. Optimal parameters include air injection at a rate that results in a water-to-air ratio of 0.28, air holes 1.016mm in diameter the entire width of the stilling basin, and a vertically orientated injection pattern. Detailed flow measurements were collected for one case using air injection and one without. An identical flow scenario was used for each experiment, namely that of a high flow rate and upstream headwater depth and a low tailwater depth. Equilibrium bed scour and velocity measurements were taken using an Acoustic Doppler Velocimeter at nearly 3000 points. Velocity data was used to construct a vector plot in order to identify which flow components contribute to the scour hole. Additionally, turbulence parameters were calculated in an effort to help understand why air-injection reduced bed scour. Turbulence intensities, normalized mean flow, normalized kinetic energy, and anisotropy of turbulence plots were constructed. A clear trend emerged that showed air-injection reduces turbulence near the bed and therefore reduces scour potential.