998 resultados para Steam engineering.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study simulates a two-stage silica gel + water adsorption desalination (AD) and chiller system. The adsorber system thermally compresses the low pressure steam generated in the evaporator to the condenser pressure in two stages. Unlike a standalone adsorption chiller unit which operates in a closed cycle the present system is an open cycle wherein the condensed desalinated water is not fed back to the evaporator. The mathematical relations formulated in the current study are based on conservation of mass and energy along with isotherm relation and kinetics for RD-type silica gel + water pair. Various constitutive relations for each component namely the evaporator, adsorber and condenser are integrated in the model. The dynamics of heat exchanger are modeled using LMTD method, and LDF model is used to predict the dynamic characteristic of the adsorber bed. The system performance indicators namely, specific cooling capacity (SCC), specific daily water production (SDWP) and coefficient of performance (COP) are used as objective functions to optimize the system. The novelty of the present work is in introduction of inter-stage pressure as a new parameter for optimizing the two-stage operation of AD chiller system. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the effect of thin silicon nitride (Si3N4) induced tensile stress on the structural release of 200nm thick SOI beam, in the surface micro-machining process. A thin (20nm / 100nm) LPCVD grown Si3N4 is shown to significantly enhance the yield of released beam in wet release technique. This is especially prominent with increase in beam length, where the beams have higher tendency for stiction. We attribute this yield enhancement to the nitride induced tensile stress, as verified by buckling tendency and resonance frequency data obtained from optical profilometry and laser doppler vibrometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research work on bulk hydroxyapatite (HA)-based composites are driven by the need to develop biomaterials with better mechanical properties without compromising its bioactivity and biocompatibility properties. Despite several years of research, the mechanical properties of the HA-based composites still need to be enhanced to match the properties of natural cortical bone. In this regard, the scope of this review on the HA-based bulk biomaterials is limited to the processing and the mechanical as well as biocompatibility properties for bone tissue engineering applications of a model system that is hydroxyapatite-titanium (HA-Ti) bulk composites. It will be discussed in this review how HA-Ti based bulk composites can be processed to have better fracture toughness and strength without compromising biocompatibility. The advantages of the functionally gradient materials to integrate the mechanical and biocompatibility properties is a promising approach in hard tissue engineering and has been emphasized here in reference to the limited literature reports. On the biomaterials fabrication aspect, the recent results are discussed to demonstrate that advanced manufacturing techniques, like spark plasma sintering can be adopted as a processing route to restrict the sintering reactions, while enhancing the mechanical properties. Various toughening mechanisms related to careful tailoring of microstructure are discussed. The in vitro cytocompatibilty, cell fate processes as well as in vivo biocompatibility results are also reviewed and the use of flow cytometry to quantify in vitro cell fate processes is being emphasized. (C) 2014 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present investigation deals with grain boundary engineering of a modified austenitic stainless steel to obtain a material with enhanced properties. Three types of processing that are generally in agreement with the principles of grain boundary engineering were carried out. The parameters for each of the processing routes were fine-tuned and optimized. The as-processed samples were characterized for microstructure and texture. The influence of processing on properties was estimated by evaluating the room temperature mechanical properties through micro-tensile tests. It was possible to obtain remarkably high fractions of CSL boundaries in certain samples. The results of the micro-tensile tests indicate that the grain boundary engineered samples exhibited higher ductility than the conventionally processed samples. The investigation provides a detailed account of the approach to be adopted for GBE processing of this grade of steel. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tissue engineering deals with the regeneration of tissues for bone repair, wound healing, drug delivery, etc., and a highly porous 3D artificial scaffold is required to accommodate the cells and direct their growth. We prepared 3D porous calcium phosphate ((hydroxyapatite/beta-tricalcium phosphate)/agarose, (HAp/beta-TCP)/agarose) composite scaffolds by sol-gel technique with water (WBS) and ethanol (EBS) as solvents. The crystalline phases of HAp and beta-TCP in the scaffolds were confirmed by X-ray diffraction (XRD) analysis. The EBS had reduced crystallinity and crystallite size compared to WBS. WBS and EBS revealed interconnected pores of 1 mu m and 100 nm, respectively. The swelling ratio was higher for EBS in water and phosphate buffered saline (PBS). An in vitro drug loading/release experiment was carried out on the scaffolds using gentamicin sulphate (GS) and amoxicillin (AMX). We observed initial burst release followed by sustained release from WBS and EBS. In addition, GS showed more extended release than AMX from both the scaffolds. GS and AMX loaded scaffolds showed greater efficacy against Pseudomonas than Bacillus species. WBS exhibited enhanced mechanical properties, wettability, drug loading and haemocompatibility compared to EBS. In vitro cell studies showed that over the scaffolds, MC3T3 cells attached and proliferated and there was a significant increase in live MC3T3 cells. Both scaffolds supported MC3T3 proliferation and mineralization in the absence of osteogenic differentiation supplements in media which proves the scaffolds are osteoconducive. Microporous scaffolds (WBS) could assist the bone in-growth, whereas the presence of nanopores (EBS) could enhance the degradation process. Hence, WBS and EBS could be used as scaffolds for tissue engineering and drug delivery. This is a cost effective technique to produce scaffolds of degradable 3D ceramic-polymer composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A critical limitation that has hampered widespread application of the electrically conducting reduced graphene oxide (r-GO) is its poor aqueous dispersibility. Here we outline a strategy to obtain water-dispersible conducting r-GO sheets, free of any stabilizing agents, by exploiting the fact that the kinetics of the photoreduction of the insulating GO is heterogeneous. We show that by controlling UV exposure times and pH, we can obtain r-GO sheets with the conducting sp(2)-graphitic domains restored but with the more acidic carboxylic groups, responsible for aqueous dispersibility, intact. The resultant photoreduced r-GO sheets are both conducting and water-dispersible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a nanostructured ``super surface'' fabricated using a simple recipe based on deep reactive ion etching of a silicon wafer. The topography of the surface is inspired by the surface topographical features of dragonfly wings. The super surface is comprised of nanopillars 4 mm in height and 220 nm in diameter with random inter-pillar spacing. The surface exhibited superhydrophobicity with a static water contact angle of 154.0 degrees and contact angle hysteresis of 8.3 degrees. Bacterial studies revealed the bactericidal property of the surface against both gram negative (Escherichia coli) and gram positive (Staphylococcus aureus) strains through mechanical rupture of the cells by the sharp nanopillars. The cell viability on these nanostructured surfaces was nearly six-fold lower than on the unmodified silicon wafer. The nanostructured surface also killed mammalian cells (mouse osteoblasts) through mechanical rupture of the cell membrane. Thus, such nanostructured super surfaces could find applications for designing selfcleaning and anti-bacterial surfaces in diverse applications such as microfluidics, surgical instruments, pipelines and food packaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been 20 years since the concept of supramolecular synthon was introduced with the purpose of rational supramolecular synthesis. While this concept has been greatly successful in employing a retrosynthetic approach in crystal engineering, the past few years have seen a continuous evolution of supramolecular synthons from being a synthetic subunit to a basic unit for understanding the dynamics of crystallization. This review attempts to give a glimpse of such developments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel design for the geometric configuration of honeycombs using a seamless combination of auxetic and conventional cores- elements with negative and positive Possion ratios respectively, has been presented. The proposed design has been shown to generate a superior band gap property while retaining all major advantages of a purely conventional or purely auxetic honeycomb structure. Seamless combination ensures that joint cardinality is also retained. Several configurations involving different degree of auxeticity and different proportions auxetic and conventional elements have been analyzed. It has been shown that the preferred configurations open up wide and clean band gap at a significantly lower frequency ranges compared to their pure counterparts. In view of existence of band gaps being desired feature for the phononic applications, reported results might be appealing. Use of such design may enable superior vibration control as well. Proposed configurations can be made isovolumic and iso-weight giving designers a fairer ground of applying such configurations without significantly changing size and weight criteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

3,4-Dichlorophenol (1) crystallizes in the tetragonal space group I4(1)/a with a short axis of 3.7926 (9) angstrom. The structure is unique in that both type I and type II Cl.....Cl interactions are present, these contact types being distinguished by the angle ranges of the respective C-Cl....Cl angles. The present study shows that these two types of contacts are utterly different. The crystal structures of 4-bromo-3-chlorophenol (2) and 3-bromo-4-chlorophenol (3) have been determined. The crystal structure of (2) is isomorphous to that of (1) with the Br atom in the 4-position participating in a type II interaction. However, the monoclinic P2(1)/c packing of compound (3) is different; while the structure still has O-H....O hydrogen bonds, the tetramer O-H.....O synthon seen in (1) and (2) is not seen. Rather than a type I Br....Br interaction which would have been mandated if (3) were isomorphous to (1) and (2), Br forms a Br....O contact wherein its electrophilic character is clearly evident. Crystal structures of the related compounds 4-chloro-3-iodophenol (4) and 3,5-dibromophenol (5) were also determined. A computational survey of the structural landscape was undertaken for (1), (2) and (3), using a crystal structure prediction protocol in space groups P2(1)/c and I4(1)/a with the COMPASS26 force field. While both tetragonal and monoclinic structures are energetically reasonable for all compounds, the fact that (3) takes the latter structure indicates that Br prefers type II over type I contacts. In order to differentiate further between type I and type II halogen contacts, which being chemically distinct are expected to have different distance fall-off properties, a variable-temperature crystallography study was performed on compounds (1), (2) and (4). Length variations with temperature are greater for type II contacts compared with type I. The type II Br....Br interaction in (2) is stronger than the corresponding type II Cl....Cl interaction in (1), leading to elastic bending of the former upon application of mechanical stress, which contrasts with the plastic deformation of (1). The observation of elastic deformation in (2) is noteworthy; in that it finds an explanation based on the strengths of the respective halogen bonds, it could also be taken as a good starting model for future property design. Cl/Br isostructurality is studied with the Cambridge Structural Database and it is indicated that this isostructurality is based on shape and size similarity of Cl and Br, rather than arising from any chemical resemblance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to obtain better materials, control over the precise location of nanoparticles is indispensable. It is shown here that ordered arrangements of nanoparticles, possessing different characteristics (electrical/ magnetic dipoles), in the blend structure can result in excellent microwave absorption. This is manifested from a high reflection loss of ca. -67 dB for the best blend structure designed here. To attenuate electromagnetic radiation, the key parameters of high electrical conductivity and large dielectric/magnetic loss are targeted here by including a conductive material multiwall carbon nanotubes, MWNTs], ferroelectric nanostructured material with associated relaxations in the GHz frequency barium titanate, BT] and lossy ferromagnetic nanoparticles nickel ferrite, NF]. In this study, bi-continuous structures were designed using 50/50 (by wt) blends of polycarbonate (PC) and polyvinylidene fluoride (PVDF). The MWNTs were modified using an electron acceptor molecule, a derivative of perylenediimide, which facilitates p-p stacking with the nanotubes and stimulates efficient charge transport in the blends. The nanoscopic materials have specific affinity towards the PVDF phase. Hence, by introducing surface-active groups, an ordered arrangement can be tailored. To accomplish this, both BT and NF were first hydroxylated followed by the introduction of amine-terminal groups on the surface. The latter facilitated nucleophilic substitution reactions with PC and resulted in their precise location. In this study, we have shown for the first time that by a compartmentalized approach, superior EM attenuation can be achieved. For instance, when the nanoparticles were localized exclusively in the PVDF phase or in both the phases, the minimum reflection losses were ca. -18 dB (for the MWNT/BT mixture) and -29 dB (for the MWNT/NF mixture), and the shielding occurred primarily through reflection. Interestingly, by adopting the compartmentalized approach wherein the lossy materials were in the PC phase and the conductive materials (MWNT) were in the PVDF phase, outstanding reflection losses of ca. -57 dB (for the BT and MWNT combination) and -67 dB (for the NF and MWNT combination) were noted and the shielding occurred primarily through absorption. Thus, the approach demonstrates that nanoscopic structuring in the blends can be achieved under macroscopic processing conditions and this strategy can further be explored to design microwave absorbers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper probes two research questions by ascertaining the factors which distinguish (i) innovative SMEs from those which are not, and (ii) SMEs which experienced a higher sales growth from those which experienced a lower sales growth, with reference to 197 engineering industry SMEs in Bangalore city. The differentiating factors between innovative and non-innovative SMEs brought out that SMEs must have ``own resources and capabilities'' in the form of internal strength and definite internal strategy if they have to innovate successfully. Younger and smaller firms which are ``entrepreneurial'' in nature and which are innovative contributed to higher sales growth of SMEs compared to older and larger firms which are ``salary-substitute firms'' in nature and which are not innovative. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, a minimum, reflection loss of 70 a was achieved, for a 6 mm thick shield (at 17.1 GHz frequency) employing a unique approach. This was accomplished by engineering nanostructures through decoration of magnetic nanopartides (nickel, Ni) onto graphene oxide (GO) sheets. Enhanced electromagnetic (EM) shielding was derived by selectively, localizing the nanoscopic particles in a specific phase of polyethylene (PE)/poly(ethylene oxide) (PEO) blends. By introduction of a conducting inclusion (like multiwall carbon nanotubes, MWNTs) together with the engineered nanostructures (nickel-decorated GO, (GO-Ni), the shielding efficiency can be enhanced significantly in contrast to physically mixing the particles in the blends. For instance, the composites showed a shielding efficiency >25 dB for a combination of MWNTS (3 wt %) and Ni nanoparticles (52 wt %) in PE/PEO blends. However, similar shielding effectiveness could be achieved for a combination of MWNTs (3 wt %) and 10 vol % of GO-Ni where in the effective concentration of Ni was only 19 wt %. The GO-Ni sheets facilitated in an efficient charge transfer as manifested from high electrical conductivity in the blends besides enhancing the permeability in the blends. It is envisioned that GO is simultaneously reduced in the process of synthesizing GO-Ni, and this facilitated in efficient charge transfer between the neighboring CNTs. More interestingly, the blends With MWNTs/GO-Ni attenuated the incoming EM radiation mostly by absorption. This study opens new avenues in designing polyolefin-based lightweight shielding materials by engineering nanostructures for numerous applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results of the laboratory investigation performed on clay beds reinforced with natural (bamboo) and commercial (geosynthetics) reinforcement materials are reported in this paper. To use bamboo effectively, three-dimensional cells (similar to geocells) and two-dimensional grids (similar to geogrids) are formed using bamboo (termed bamboo cells and bamboo grids, respectively). The performance of clay beds reinforced with bamboo cells and bamboo grids is compared with that of clay beds reinforced with geocells and geogrids. The bearing capacity of the clay bed increased by six times when a combination of geocell and geogrid was used. The ultimate bearing capacity of the clay bed reinforced with bamboo cell and bamboo grid was found to be 1.3 times more than that of clay bed reinforced with geocell and geogrid. In addition, substantial reduction in the footing settlement and the surface deformation was observed. The tensile strength and surface roughness of bamboo were found to be nine times and three times, respectively, higher than geocell materials. The bamboo was treated chemically to increase its durability. Although the performance of bamboo was reduced by 15-20% after the chemical treatment, its performance was better than its commercial counterparts. (C) 2014 American Society of Civil Engineers.