595 resultados para Stabilised zirconia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metal-Ceramic (M/C) Zirconia-stainless steel interfaces have been processed through brazing techniques due to the excellent combination of properties such as high temperature stability, high corrosion resistance and good mechanical properties. However, some M/C interfaces show some defects, like porosity and cracks results in the degradation of the interfaces, leading even to its total rupture. Most of time, those defects are associated with an improper brazing parameters selection to the M/C system. In this work, ZrO2 Y-TZP and ZrO2 Mg - PSZ were joint with the stainless steel grade 304 by brazing using a eutectic silver-copper (Ag28Cu) interlayer alloy with different thermal cycles. Ceramic surfaces were previous mechanically metallized with titanium to improve adhesion of the system. The effect of temperature on the M/C interface was studied. SEM-EDS and 3 point flexural bend test were performed to evaluate morphology, chemical composition and mechanical resistance of the M/C interfaces. Lower thermal cycle temperatures produced better results of mechanical resistance, and more regular/ homogeneous reaction layers between braze alloy and metal-ceramic surfaces. Also was proved the AgCu braze alloy activation in situ by titanium

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fuel cells are considered one of the most promising ways of converting electrical energy due to its high yield and by using hydrogen (as fuel) which is considered one of the most important source of clean energy for the future. Rare earths doped ceria has been widely investigated as an alternative material for the electrolyte of solid oxide fuel cells (SOFCs) due to its high ionic conductivity at low operating temperatures compared with the traditional electrolytes based on stabilized zirconia. This work investigates the effect of gallium oxide (Gallia) as a sintering aid in Eu doped ceria ceramic electrolytes since this effect has already been investigated for Gd, Sm and Y doped ceria electrolytes. The desired goal with the use of a sintering aid is to reduce the sintering temperature aiming to produce dense ceramics. In this study we investigated the effects on densification, microstructure and ionic conduction caused by different molar fraction of the dopants europium (10, 15 and 20%) and gallium oxide (0.3, 0.6 and 0.9%) in samples sintered at 1300, 1350 and 1450 0 C. Samaria (10 and 20%) doped ceria samples sintered between 1350 and 1450 °C were used as reference. Samples were synthesized using the cation complexation method. The ceramics powders were characterized by XRF, XRD and SEM, while the sintered samples were investigated by its relative density, SEM and impedance spectroscopy. It was showed that gallia contents up to 0.6% act as excellent sintering aids in Eu doped ceria. Above this aid content, gallia addition does not promote significant increase in density of the ceramics. In Ga free samples the larger densification were accomplished with Eu 15% molar, effect expressed in the microstructure with higher grain growth although reduced and surrounded by many open pores. Relative densities greater than 95 % were obtained by sintering between 1300 and 1350 °C against the usual range 1500 - 1600 0 C. Samples containing 10% of Sm and 0.9% of Ga reached 96% of theoretical density by sintering at 1350 0 C for 3h, a gain compared to 97% achieved with 20% of Sm and 1% of Ga co-doped cerias sintered at 1450 0 C for 24 h as described in the literature. It is found that the addition of gallia in the Eu doped ceria has a positive effect on the grain conductivity and a negative one in the grain boundary conductivity resulting in a small decrease in the total conductivity which will not compromise its application as sintering aids in ceria based electrolytes. Typical total conductivity values at 600 and 700 °C, around 10 and 30 mS.cm -1 respectively were reached in this study. Samples with 15% of Eu and 0.9 % of Ga sintered at 1300 and 1350 °C showed relative densities greater than 96% and total conductivity (measured at 700 °C) between 20 and 33 mS.cm -1 . The simultaneous sintering of the electrolyte with the anode is one of the goals of research in materials for SOFCs. The results obtained in this study suggest that dense Eu and Ga co-doped ceria electrolytes with good ionic conductivity can be sintered simultaneously with the anode at temperatures below 1350 °C, the usual temperature for firing porous anode materials

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ionic oxides with ABO3 structure, where A represents a rare earth element or an alkaline metal and B is a transition metal from group VIII of the periodic table are potential catalysts for oxidation and good candidates for steam reforming reaction. Different methods have been considered for the synthesis of the oxide materials with perovskite structure to produce a high homogeneous material with low amount of impurities and low calcination temperatures. In the current work, oxides with the LaNiO3 formula had been synthesized using the method of the polymeric precursors. The thermal treatment of the materials took place at 300 ºC for 2h. The material supported in alumina and/or zirconia was calcined at 800 ºC temperature for 4h. The samples had been characterized by the following techniques: thermogravimetry; infrared spectroscopy; X-ray diffraction; specific surface area; distribution of particle size; scanning electron microscopy and thermo-programmed reduction. The steam reforming reaction was carried out in a pilot plant using reducing atmosphere in the reactor with a mixture of 10% H2-Argon, a mass about 5g of catalyst, flowing at 50 mL.min-1. The temperature range used was 50 - 1000 oC with a heating rate of 10 oC.min-1. A thermal conductivity detector was used to analyze the gas after the water trapping, in order to permit to quantify the consumption of hydrogen for the lanthanum nickelates (LaNiO3). The results showed that lanthanum nickelate were more efficient when supported in alumina than when supported in zirconia. It was observed that the methane conversion was approximately 100% and the selectivity to hydrogen was about 70%. In all cases were verified low selectivity to CO and CO2

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At present, the material of choice for performing aesthetic dental prosthetic work is in the ceramic. Among them, the ceramic base of stabilized zirconia with 3% yttria (3Y - TZP) stand out for having excellent physical and mechanical properties. During the machining of blocks of zirconia in the laboratory to prepare the various types of prostheses, much of the material is given off in the form of powder, which is subsequently discarded. The waste of this material results in financial loss, reflecting higher final cost treatment for patients, as well as damage to the environment, thanks to the processes involved in the manufacture and disposal of the ceramic. This research, pioneered the recycling of zirconium oxide powder obtained during milling of dental crowns and bridges, we highlight the social and environmental aspects and aims to establish a protocol for the reuse of waste (powder of zirconia Zirkonzahn® system) discarded to obtain a new block of compacted zirconia to maintain the same mechanical and microstructural properties of commercial high-cost imported material. To compare with the commercial material, samples were uniaxially (20 MPa) and isostatically (100 MPa), and its mechanical and microstructural characterization was performed through tests of density, porosity, dilatometry, X-ray diffraction (XRD), hardness, fracture toughness, resistance to fracture electron microscopy (SEM) and analysis of grain size. The results observed in the samples were isostatically pressed similiares those obtained with samples from the commercial material demonstrating the viability of the process

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of the thesis "Conversion of a Micro, Glow-Ignition, Two-Stroke Engine from Nitromethane-Methanol Blend Fuel to Military Jet Propellant (JP-8)" was to demonstrate the ability to operate a small engine on JP-8 and was completed in two phases. The first phase included choosing, developing a test stand for, and baseline testing a nitromethane-methanol-fueled engine. The chosen engine was an 11.5 cc, glow-ignition, two-stroke engine designed for remote-controlled helicopters. A micro engine test stand was developed to load and motor the engine. Instrumentation specific to the low flow rates and high speeds of the micro engine was developed and used to document engine behavior. The second phase included converting the engine to operate on JP-8, completing JP-8-fueled steady-state testing, and comparing the performance of the JP-8-fueled engine to the nitromethane-methanol-fueled engine. The conversion was accomplished through a novel crankcase heating method; by heating the crankcase for an extended period of time, a flammable fuel-air mixture was generated in the crankcase scavenged engine, which greatly improved starting times. To aid in starting and steady-state operation, yttrium-zirconia impregnated resin (i.e. ceramic coating) was applied to the combustion surfaces. This also improved the starting times of the JP-8-fueled engine and ultimately allowed for a 34-second starting time. Finally, the steady-state data from both the nitromethane-methanol and JP-8-fueled micro engine were compared. The JP-8-fueled engine showed signs of increased engine friction while having higher indicated fuel conversion efficiency and a higher overall system efficiency. The minimal ability of JP-8 to cool the engine via evaporative effects, however, created the necessity of increased cooling air flow. The conclusion reached was that JP-8-fueled micro engines could be viable in application, but not without additional research being conducted on combustion phenomenon and cooling requirements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The primary objective of this research was to perform an in vitro assessment of the ability of microscale topography to alter cell behaviour, with specific regard to producing favourable topography in an orthopaedic ceramic material suitable for implantation in the treatment of arthritis. Topography at microscale and nanoscale alters the bioactivity of the material. This has been used in orthopaedics for some time as seen with optimal pore size in uncemented hip and knee implants. This level of topography involves scale in hundreds of micrometres and allows for the ingrowth of tissue. Topography at smaller scale is possible thanks to progressive miniaturisation of technology. A topographic feature was created in a readily available clinically licensed polymer, Polycaprolcatone (PCL). The effect of this topography was assessed in vitro. The same topography was transferred to the latest generation composite orthopaedic ceramic, zirconia toughened alumina (ZTA). The fidelity of reproduction of the topography was examined using scanning electron microscopy (SEM) and atomic force microscopy (AFM). These investigations showed more accurate reproduction of the topography in PCL than ZTA with some material artefacts in the ZTA. Cell culture in vitro was performed on the patterned substrates. The response of osteoprogenitor cells was assessed using immunohistochemistry, real-time polymerase chain reaction and alizarin staining. These results showed a small effect on cell behaviour. Finally metabolic comparison was made of the effects created by the two different materials and the topography in each. The results have shown a reproducible topography in orthopaedic ceramics. This topography has demonstrated a positive osteogenic effect in both polycaprolactone and zirconia toughened alumina across multiple assessment modalities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This Thesis aims at presenting the general results achieved during my PhD, that was focused on the study and characterisation of new homoleptic and heteroleptic metal carbonyl clusters. From a dimensional point of view, the nuclearity of such species ranges from 2 to 44 metal atoms. Lower nuclearity compounds may be viewed as polymetallic complexes, whereas higher nuclearity species can reach the nanocluster size, by resembling to ultrasmall nanoparticles (USNPs). Initially, my research was focused on the investigation of small MCCs stabilised by N-Heterocyclic carbene (NHCs) ligands. At this regard, a general strategy for the synthesis of mono-anionic [Fe(CO)4(MNHC)]− and neutral Fe(CO)4(MNHC)2, Co(CO)4(MNHC) (M = Cu, Ag, Au; NHC = IMes, IPr) species has been developed. Furthermore, during this investigation, neutral trimetallic Fe(CO)4(MNHC)(M’NHC) (M, M’ = Cu, Ag, Au; M ≠ M'; NHC = IPr) and neutral heteroleptic Fe(CO)4(MNHC)(MNHC’) (M = Au; NHC = IMes, IPr) compounds have been isolated. Thermal treatment turned out to be an efficient method for the growth of the dimension of MCCs. Indeed, species of the type [M3Fe3(CO)12]3– and [M4Fe4(CO)16]4– (M = Ag, Au) as well as larger clusters were formed during the thermal treatment of the new Fe-M (M = Ag, Cu, Au) carbonyl compounds. These species inspired the investigation of promising reaction paths for the synthesis of Fe-M (M = Ag, Cu, Au) carbonyl compounds devoid of ancillary ligands and alloy MCCs, such as the heterometallic [MxM’5-xFe4(CO)16]3− (M, M' = Cu, Ag, Au; M ≠ M'; x = 0-5) carbonyl clusters. The second part of this Thesis regards high nuclearity MCCs. In particular, new strategies for the growth of platinum carbonyl clusters involving, for instance, the employment of bidentate phosphines are described, as well as the syntheses and the thermal decomposition of new Ni-M (Pd, Pt) carbonyl clusters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Preformed Au nanoparticles supported on activated carbon and TiO2 were synthesised by sol-immobilisation. Polyethylene glycol, polyvinyl pyrrolidone and polyvinyl alcohol were used as stabilisers for the gold nanoparticles at different polymer/Au wt/wt ratios for each polymer. The effect of polymer/Au wt/wt ratios was investigated on (i) the average nanoparticle size, (ii) catalytic activity for two reactions, 4-nitrophenol reduction and glucose oxidation to glucaric acid. 4-nitrophenol reduction is recognised as a model reaction for nanomaterial catalytic activity tests; glucose oxidation to glucaric acid is a reaction that is traditionally carried out with concentrated nitric acid, for which alternative reaction pathways are looked for in an effort to reduce its environmental impact. The catalysts were characterised from the nanoparticle synthesis by colloidal method by means of UV-vis spectroscopy and DLS analysis, to the immobilisation step by XRD and TEM. The effect of the polymer:Au wt/wt ratio on nanoparticle size depends on the polymer nature, and point out the need to optimise supported nanoparticle synthesis protocols in the future depending on the type of stabiliser. The catalytic tests revealed that the polymers interact with Au nanoparticles through different active sites. Activated carbon (AC) and TiO2 were compared as supports for Au nanoparticles stabilised by PVA at PVA/Au 0,65 wt/wt. AC-supported Au NPs were the most active for glucose oxidation while TiO2-stabilised Au NPs were five times more active in 4-nitrophenol reduction that AC-supported NPs. Hence support and stabiliser are important parameters that should be optimised in order to achieve high catalytic activity for a given reaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La tesi presenta un’analisi storico-concettuale del concetto di emancipazione in Francia tra la Rivoluzione francese e gli anni Quaranta dell’Ottocento a partire dalla centralità delle donne nel processo rivoluzionario e dal problema del potere paterno e dell’ordine della famiglia. Da questa prospettiva viene ricostruito il momento di affermazione del significato moderno del concetto: prima con l’Illuminismo e poi con la Rivoluzione francese si determina un progressivo allargamento semantico che farà posto a significati politico-sociali inediti e a una serie di soggetti imprevisti. La Rivoluzione presenta infatti sulla scena un soggetto collettivo, già maturo, che dà forma all’emancipazione rivoluzionaria. Quest’ultima richiede una specifica scienza in grado di arginare i suoi effetti politici più pericolosi senza tradirne le premesse formali. A questo risponde l’Idéologie come scienza sociale sul finire della Rivoluzione. Se le donne in questi anni si mobilitano a partire dall’emancipazione rivoluzionaria, esse rappresentano al tempo stesso un problema fondamentale per l’ordine rivoluzionario come mostra il dibattito sul potere paterno che fa luce sul passaggio, fondamentale per il concetto di emancipazione, dal potere di emancipare del padre a quello dello Stato emancipatore. Gli esiti di questo dibattito si trovano nel Codice civile e nella sua emancipazione codificata, che definisce i confini giuridici e formali dell’emancipazione rivoluzionaria e le sue gerarchie. In seguito, la tesi ricostruisce le trasformazioni del concetto all’indomani della Rivoluzione nella dottrina di Saint-Simon e dei suoi allievi. Questa sarà all’origine del discorso che si sviluppa in Francia tra gli anni Trenta e Quaranta sul problema dell’emancipazione della donna che trova espressione negli scritti delle donne saint-simoniane. La tesi si ferma alle porte degli anni Quaranta quando l’emancipazione nel suo significato moderno si stabilizza e diventa un vero e proprio concetto di movimento, espressione di processi di emancipazione che si erano preparati negli anni precedenti.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present research work focused on the valorisation and upgrading of bio-ethanol over heterogeneous catalysts in a lab-scale continuous gas-flow system. In the Unibo laboratories, catalytic tests have been carried out in the temperature range 300-600°C by feeding an ethanol/He mixture in the reactor. After choosing the reaction conditions, ion-exchanged hydroxyapatite with transition metals (i.e., Fe, Cu) and alkaline earth metal (i.e., Sr) have been synthesized and tested. The Sr-HAP catalyst led to the formation of a complex reaction mixture the composition of which need further optimization in order to fill the requisite to be used as fuel-blend. Then, some zirconium-oxide based catalysts have been prepared through two different methods, precipitation and hydrothermal, by varying some synthetic parameters (i.e., pH, the nature of the base) and by adding a transition metal as dopant agent (i.e., Ti and Y). The presence of a dopant into the zirconia structure favoured the stabilization of the tetragonal or cubic phase against the monoclinic one. Interestingly, 5%mol Ti-doped zirconia exhibited a different catalytic behaviour yielding diethyl ether as major product at 300°C, while all the others samples produced mainly ethylene. Then, the effect of acid-base properties of sepiolite, using alkali metals (i.e., Na, K, Cs) with different metal loading (i.e., 2, 4, 5, 7, 14 wt%) as promoters, and of the redox properties of sepiolite-supported CuO or NiO, on the catalytic conversion of ethanol into n-butanol has been investigated. Thermal treated sepiolite samples mainly acted as acid catalyst, yielding preferentially the dehydration products of ethanol (ethylene and diethyl ether). Best results in terms of activity (ethanol conversion, 59%) and n-butanol selectivity (30%) where obtained at 400ºC and a contact time, W/F, of 2 g/mL·s over the catalyst consisting of sepiolite calcined at 500ºC modified with 7 wt% of cesium.