981 resultados para Spin excitation
Resumo:
We theoretically investigate the local density of states (LDOS) probed by an STM tip of ferromagnetic metals hosting a single adatom and a subsurface impurity. We model the system via the two-impurity Anderson Hamiltonian. By using the equation of motion with the relevant Green's functions, we derive analytical expressions for the LDOS of two host types: a surface and a quantum wire. The LDOS reveals Friedel-like oscillations and Fano interference as a function of the STM tip position. These oscillations strongly depend on the host dimension. Interestingly, we find that the spin-dependent Fermi wave numbers of the hosts give rise to spin-polarized quantum beats in the LDOS. Although the LDOS for the metallic surface shows a damped beating pattern, it exhibits the opposite behavior in the quantum wire. Due to this absence of damping, the wire operates as a spatially resolved spin filter with a high efficiency. © 2013 American Physical Society.
Resumo:
X-band electron spin resonance (ESR) measurements have been performed on a conducting free-standing film of polyaniline plasticized and protonated with di-n-dodecyl ester of sulfosuccinic acid (DDoESSA). The magnetic field was applied parallel and perpendicular to the plane of the film. At around 75 K a transition is observed from Pauli susceptibility to a localized state in which the spin 1/2 polarons behave as spin 1/2 dimers. A rough estimation of the intradimer and interdimer exchange constants is obtained. Below 5 K, ESR data reveal a weak ferromagnetism with the Dzyaloshinskii-Moriya vector mainly oriented in the plane of the film. The existence of a relatively well-defined n-fold axis along the chain direction in the crystalline regions confers a symmetry compatible with such analysis. © 2013 IOP Publishing Ltd.
Resumo:
Antimicrobial peptides (AMPs) isolated from several organisms have been receiving much attention due to some specific features that allow them to interact with, bind to, and disrupt cell membranes. The aim of this paper was to study the interactions between a membrane mimetic and the cationic AMP Ctx(Ile21)-Ha as well as analogues containing the paramagnetic amino acid 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC) incorporated at residue positions n = 0, 2, and 13. Circular dichroism studies showed that the peptides, except for [TOAC13]Ctx(Ile21)-Ha, are unstructured in aqueous solution but acquire different amounts of α-helical secondary structure in the presence of trifluorethanol and lysophosphocholine micelles. Fluorescence experiments indicated that all peptides were able to interact with LPC micelles. In addition, Ctx(Ile21)-Ha and [TOAC13]Ctx(Ile21)-Ha peptides presented similar water accessibility for the Trp residue located near the N-terminal sequence. Electron spin resonance experiments showed two spectral components for [TOAC0]Ctx(Ile21)-Ha, which are most likely due to two membrane-bound peptide conformations. In contrast, TOAC2 and TOAC13 derivatives presented a single spectral component corresponding to a strong immobilization of the probe. Thus, our findings allowed the description of the peptide topology in the membrane mimetic, where the N-terminal region is in dynamic equilibrium between an ordered, membrane-bound conformation and a disordered, mobile conformation; position 2 is most likely situated in the lipid polar head group region, and residue 13 is fully inserted into the hydrophobic core of the membrane. © 2013 Vicente et al.
Resumo:
In this work, we investigate theoretically the spin-resolved local density of states (SR-LDOS) of a ferromagnetic (FM) island hybridized with an adatom, which is described by the Single Impurity Anderson Model (SIAM). Our results are comparable with Scanning Tunneling Microscope (STM) experimental data. © 2012 Springer Science+Business Media, LLC.
Resumo:
Here we obtain all possible second-order theories for a rank-2 tensor which describe a massive spin-2 particle. We start with a general second-order Lagrangian with ten real parameters. The absence of lower-spin modes and the existence of two local field redefinitions leads us to only one free parameter. The solutions are split into three one-parameter classes according to the local symmetries of the massless limit. In the class which contains the usual massive Fierz-Pauli theory, the subset of spin-1 massless symmetries is maximal. In another class where the subset of spin-0 symmetries is maximal, the massless theory is invariant under Weyl transformations and the mass term does not need to fit into the form of the Fierz-Pauli mass term. In the remaining third class neither the spin-1 nor the spin-0 symmetry is maximal and we have a new family of spin-2 massive theories. © 2013 American Physical Society.
Resumo:
Using an approach based on the Casimir operators of the de Sitter group, conformally invariant equations for a fundamental spin-2 field are obtained, and their consistency is discussed. It is shown that only when the spin-2 field is interpreted as a 1-form assuming values in the Lie algebra of the translation group, rather than a symmetric second-rank tensor, the field equation is both conformally and gauge invariant. © 2013 Pleiades Publishing, Ltd.
Resumo:
We report a diversity of stable gap solitons in a spin-orbit-coupled Bose-Einstein condensate subject to a spatially periodic Zeeman field. It is shown that the solitons can be classified by the main physical symmetries they obey, i.e., symmetries with respect to parity (P), time (T), and internal degree of freedom, i.e., spin (C), inversions. The conventional gap and gap-stripe solitons are obtained in lattices with different parameters. It is shown that solitons of the same type but obeying different symmetries can exist in the same lattice at different spatial locations. PT and CPT symmetric solitons have antiferromagnetic structure and are characterized, respectively, by nonzero and zero total magnetizations. © 2013 American Physical Society.
Resumo:
In this work we study two different spin-boson models. Such models are generalizations of the Dicke model, it means they describe systems of N identical two-level atoms coupled to a single-mode quantized bosonic field, assuming the rotating wave approximation. In the first model, we consider the wavelength of the bosonic field to be of the order of the linear dimension of the material composed of the atoms, therefore we consider the spatial sinusoidal form of the bosonic field. The second model is the Thompson model, where we consider the presence of phonons in the material composed of the atoms. We study finite temperature properties of the models using the path integral approach and functional methods. In the thermodynamic limit, N→∞, the systems exhibit phase transitions from normal to superradiant phase at some critical values of temperature and coupling constant. We find the asymptotic behavior of the partition functions and the collective spectrums of the systems in the normal and the superradiant phases. We observe that the collective spectrums have zero energy values in the superradiant phases, corresponding to the Goldstone mode associated to the continuous symmetry breaking of the models. Our analysis and results are valid in the limit of zero temperature β→∞, where the models exhibit quantum phase transitions. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Física - FEG
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciência dos Materiais - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Física - FEG
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)