906 resultados para Spearman correlations
Resumo:
"LA-UR-76-1844."
Resumo:
Errata slip inserted.
Resumo:
Tables.
Resumo:
Cover title.
Resumo:
Bibliography: p. 20-21.
Resumo:
"Meteorology Division. Project 6670."
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Recent studies have documented the growing economic and financial integration between countries. Among other things, this has led to the argument that greater integration results in higher bilateral correlations between returns on national stock markets. This study endeavours to link the two issues by utilizing the assumption that if countries are integrated, they would have to display a minimum level of correlation. This is achieved by constructing a bound on the level of the bilateral correlation, as originally developed by Kasa (1995). In contrast to Kasa, the present studies demonstrate that the correlation bound may not be downward sloping in all cases and careful interpretation of the results is required.
Resumo:
A system of two two-level atoms interacting with a squeezed vacuum field can exhibit stationary entanglement associated with nonclassical two-photon correlations characteristic of the squeezed vacuum field. The amount of entanglement present in the system is quantified by the well known measure of entanglement called concurrence. We find analytical formulae describing the concurrence for two identical and nonidentical atoms and show that it is possible to obtain a large degree of steady-state entanglement in the system. Necessary conditions for the entanglement are nonclassical two-photon correlations and nonzero collective decay. It is shown that nonidentical atoms are a better source of stationary entanglement than identical atoms. We discuss the optimal physical conditions for creating entanglement in the system; in particular, it is shown that there is an optimal and rather small value of the mean photon number required for creating entanglement.
Resumo:
Recent experimental measurements of atomic intensity correlations through atom shot noise suggest that atomic quadrature phase correlations may soon be measured with a similar precision. We propose a test of local realism with mesoscopic numbers of massive particles based on such measurements. Using dissociation of a Bose-Einstein condensate of diatomic molecules into bosonic atoms, we demonstrate that strongly entangled atomic beams may be produced which possess Einstein-Podolsky-Rosen (EPR) correlations in field quadratures in direct analogy to the position and momentum correlations originally considered by EPR.
Resumo:
The relationship between the production of dimethylsulfide (DMS) in the upper ocean and atmospheric sulfate aerosols has been confirmed through local shipboard measurements, and global modeling studies alike. In order to examine whether such a connection may be recoverable in the satellite record, we have analyzed the correlation between mean surface chlorophyll (CHL) and aerosol optical depth (AOD) in the Southern Ocean, where the marine atmosphere is relatively remote from anthropogenic and continental influences. We carried out the analysis in 5-degree zonal bands between 50 degrees S and 70 degrees S, for the period ( 1997 - 2004), and in smaller meridional sectors in the Eastern Antarctic, Ross and Weddell seas. Seasonality is moderate to strong in both CHL and AOD signatures throughout the study regions. Coherence in the CHL and AOD time series is strong in the band between 50 degrees S and 60 degrees S, however this synchrony is absent in the sea-ice zone (SIZ) south of 60 degrees S. Marked interannual variability in CHL occurs south of 60 degrees S, presumably related to variability in sea-ice production during the previous winter. We find a clear latitudinal difference in the cross correlation between CHL and AOD, with the AOD peak preceding the CHL bloom by up to 6 weeks in the SIZ. This suggests that substantial trace gas emissions ( aerosol precursors) are being produced over the SIZ in spring ( October - December) as sea ice melts. This hypothesis is supported by field data that record extremely high levels of sulfur species in sea ice, surface seawater, and the overlying atmosphere during ice melt.
Resumo:
We compare theoretically the tripartite entanglement available from the use of three concurrent x(2) nonlinearities and three independent squeezed states mixed on beamsplitters, using an appropriate version of the van Loock-Furusawa inequalities. We also define three-mode generalizations of the Einstein-Podolsky-Rosen paradox which are an alternative for demonstrating the inseparability of the density matrix.