888 resultados para Spatial Data Infrastructure
Resumo:
Reliance on private partners to help provide infrastructure investment and service delivery is increasing in the United States. Numerous studies have examined the determinants of the degree of private participation in infrastructure projects as governed by contract type. We depart from this simple public/private dichotomy by examining a rich set of contractual arrangements. We utilize both municipal and state-level data on 472 projects of various types completed between 1985 and 2008. Our estimates indicate that infrastructure characteristics, particularly those that reflect stand alone versus network characteristics, are key factors influencing the extent of private participation. Fiscal variables, such as a jurisdiction’s relative debt level, and basic controls, such as population and locality of government, increase the degree of private participation, while a greater tax burden reduces private participation.
Resumo:
Life sciences are yielding huge data sets that underpin scientific discoveries fundamental to improvement in human health, agriculture and the environment. In support of these discoveries, a plethora of databases and tools are deployed, in technically complex and diverse implementations, across a spectrum of scientific disciplines. The corpus of documentation of these resources is fragmented across the Web, with much redundancy, and has lacked a common standard of information. The outcome is that scientists must often struggle to find, understand, compare and use the best resources for the task at hand.Here we present a community-driven curation effort, supported by ELIXIR-the European infrastructure for biological information-that aspires to a comprehensive and consistent registry of information about bioinformatics resources. The sustainable upkeep of this Tools and Data Services Registry is assured by a curation effort driven by and tailored to local needs, and shared amongst a network of engaged partners.As of November 2015, the registry includes 1785 resources, with depositions from 126 individual registrations including 52 institutional providers and 74 individuals. With community support, the registry can become a standard for dissemination of information about bioinformatics resources: we welcome everyone to join us in this common endeavour. The registry is freely available at https://bio.tools.
Resumo:
This thesis develops a comprehensive and a flexible statistical framework for the analysis and detection of space, time and space-time clusters of environmental point data. The developed clustering methods were applied in both simulated datasets and real-world environmental phenomena; however, only the cases of forest fires in Canton of Ticino (Switzerland) and in Portugal are expounded in this document. Normally, environmental phenomena can be modelled as stochastic point processes where each event, e.g. the forest fire ignition point, is characterised by its spatial location and occurrence in time. Additionally, information such as burned area, ignition causes, landuse, topographic, climatic and meteorological features, etc., can also be used to characterise the studied phenomenon. Thereby, the space-time pattern characterisa- tion represents a powerful tool to understand the distribution and behaviour of the events and their correlation with underlying processes, for instance, socio-economic, environmental and meteorological factors. Consequently, we propose a methodology based on the adaptation and application of statistical and fractal point process measures for both global (e.g. the Morisita Index, the Box-counting fractal method, the multifractal formalism and the Ripley's K-function) and local (e.g. Scan Statistics) analysis. Many measures describing the space-time distribution of environmental phenomena have been proposed in a wide variety of disciplines; nevertheless, most of these measures are of global character and do not consider complex spatial constraints, high variability and multivariate nature of the events. Therefore, we proposed an statistical framework that takes into account the complexities of the geographical space, where phenomena take place, by introducing the Validity Domain concept and carrying out clustering analyses in data with different constrained geographical spaces, hence, assessing the relative degree of clustering of the real distribution. Moreover, exclusively to the forest fire case, this research proposes two new methodologies to defining and mapping both the Wildland-Urban Interface (WUI) described as the interaction zone between burnable vegetation and anthropogenic infrastructures, and the prediction of fire ignition susceptibility. In this regard, the main objective of this Thesis was to carry out a basic statistical/- geospatial research with a strong application part to analyse and to describe complex phenomena as well as to overcome unsolved methodological problems in the characterisation of space-time patterns, in particular, the forest fire occurrences. Thus, this Thesis provides a response to the increasing demand for both environmental monitoring and management tools for the assessment of natural and anthropogenic hazards and risks, sustainable development, retrospective success analysis, etc. The major contributions of this work were presented at national and international conferences and published in 5 scientific journals. National and international collaborations were also established and successfully accomplished. -- Cette thèse développe une méthodologie statistique complète et flexible pour l'analyse et la détection des structures spatiales, temporelles et spatio-temporelles de données environnementales représentées comme de semis de points. Les méthodes ici développées ont été appliquées aux jeux de données simulées autant qu'A des phénomènes environnementaux réels; nonobstant, seulement le cas des feux forestiers dans le Canton du Tessin (la Suisse) et celui de Portugal sont expliqués dans ce document. Normalement, les phénomènes environnementaux peuvent être modélisés comme des processus ponctuels stochastiques ou chaque événement, par ex. les point d'ignition des feux forestiers, est déterminé par son emplacement spatial et son occurrence dans le temps. De plus, des informations tels que la surface bru^lée, les causes d'ignition, l'utilisation du sol, les caractéristiques topographiques, climatiques et météorologiques, etc., peuvent aussi être utilisées pour caractériser le phénomène étudié. Par conséquent, la définition de la structure spatio-temporelle représente un outil puissant pour compren- dre la distribution du phénomène et sa corrélation avec des processus sous-jacents tels que les facteurs socio-économiques, environnementaux et météorologiques. De ce fait, nous proposons une méthodologie basée sur l'adaptation et l'application de mesures statistiques et fractales des processus ponctuels d'analyse global (par ex. l'indice de Morisita, la dimension fractale par comptage de boîtes, le formalisme multifractal et la fonction K de Ripley) et local (par ex. la statistique de scan). Des nombreuses mesures décrivant les structures spatio-temporelles de phénomènes environnementaux peuvent être trouvées dans la littérature. Néanmoins, la plupart de ces mesures sont de caractère global et ne considèrent pas de contraintes spatiales com- plexes, ainsi que la haute variabilité et la nature multivariée des événements. A cet effet, la méthodologie ici proposée prend en compte les complexités de l'espace géographique ou le phénomène a lieu, à travers de l'introduction du concept de Domaine de Validité et l'application des mesures d'analyse spatiale dans des données en présentant différentes contraintes géographiques. Cela permet l'évaluation du degré relatif d'agrégation spatiale/temporelle des structures du phénomène observé. En plus, exclusif au cas de feux forestiers, cette recherche propose aussi deux nouvelles méthodologies pour la définition et la cartographie des zones périurbaines, décrites comme des espaces anthropogéniques à proximité de la végétation sauvage ou de la forêt, et de la prédiction de la susceptibilité à l'ignition de feu. A cet égard, l'objectif principal de cette Thèse a été d'effectuer une recherche statistique/géospatiale avec une forte application dans des cas réels, pour analyser et décrire des phénomènes environnementaux complexes aussi bien que surmonter des problèmes méthodologiques non résolus relatifs à la caractérisation des structures spatio-temporelles, particulièrement, celles des occurrences de feux forestières. Ainsi, cette Thèse fournit une réponse à la demande croissante de la gestion et du monitoring environnemental pour le déploiement d'outils d'évaluation des risques et des dangers naturels et anthro- pogéniques. Les majeures contributions de ce travail ont été présentées aux conférences nationales et internationales, et ont été aussi publiées dans 5 revues internationales avec comité de lecture. Des collaborations nationales et internationales ont été aussi établies et accomplies avec succès.
Resumo:
This paper aims to provide insights into the phenomenon of knowledge flows. We study one of the main mechanisms through which these flows occur, i.e., the mobility of highly-skilled individuals. We focus on the geographical mobility of inventors across European regions. Thus, patent data are used to trace the pattern of inventors’ mobility across european regions, to track down focuses of attraction of talent throughout the continent, and to study their distribution across the space. To do so, we gather information from PCT patent documents and we first match the names which seemed to belong to the same inventor and then we create a new algorithm to decide whether each patent applied for under each name belongs to the same inventor.
Resumo:
The use of tolls is being widespread around the world. Its ability to fund infrastructure projects and to solve budget constraints have been the main rationale behind its renewed interest. However, less attention has been payed to the safety effects derived from this policy in a moment of increasing concern on road fatalities. Pricing best infrastructures shifts some drivers onto worse alternative roads usually not prepared to receive high traffic in comparable safety standards. In this paper we provide evidence of the existence of this perverse consequence by using an international European panel in a two way fixed effects estimation.
Resumo:
We present a participant study that compares biological data exploration tasks using volume renderings of laser confocal microscopy data across three environments that vary in level of immersion: a desktop, fishtank, and cave system. For the tasks, data, and visualization approach used in our study, we found that subjects qualitatively preferred and quantitatively performed better in the cave compared with the fishtank and desktop. Subjects performed real-world biological data analysis tasks that emphasized understanding spatial relationships including characterizing the general features in a volume, identifying colocated features, and reporting geometric relationships such as whether clusters of cells were coplanar. After analyzing data in each environment, subjects were asked to choose which environment they wanted to analyze additional data sets in - subjects uniformly selected the cave environment.
Resumo:
The spatial dynamics of Citrus Variegated Chlorosis (CVC) was studied in a five-year old commercial orchard of 'Valencia' sweet orange (Citrus sp.) trees, located in the northern region of the state of São Paulo, Brazil. One thousand trees were assessed in 25 rows of 40 trees, planted at 8 x 5 m spacing. Disease incidence data were taken beginning in March 1994 and ending in January 1996, at intervals of four to five months. Disease aggregation was observed through the dispersion index analysis (Ib), which was calculated by dividing the area into quadrants. CVC spatial dynamics was examined using semivariogram analysis, which revealed that the disease was aggregated in the field forming foci of 10 to 14 m. For each well-fitted model, a kriging map was created to better visualize the distribution of the disease. The spherical model was the best fit for the data in this study. Kriging maps also revealed that the incidence of CVC increased in periods during which the trees underwent vegetative growth, coinciding with greater expected occurrence of insect vectors of the bacterium in the field.
Resumo:
The present study investigates the spatial and spectral discrimination potential for grassland patches in the inner Turku Archipelago using Landsat Thematic Mapper satellite imagery. The spatial discrimination potential was computed through overlay analysis using official grassland parcel data and a hypothetical 30 m resolution satellite image capturing the site. It found that Landsat TM imagery’s ability to retrieve pure or near-pure pixels (90% purity or more) from grassland patches smaller than 1 hectare was limited to 13% success, compared to 52% success when upscaling the resolution to 10 x 10 m pixel size. Additionally, the perimeter/area patch metric is proposed as a predictor for the suitability of the spatial resolution of input imagery. Regression analysis showed that there is a strong negative correlation between a patch’s perimeter/area ratio and its pure pixel potential. The study goes on to characterise the spectral response and discrimination potential for the five main grassland types occurring in the study area: recreational grassland, traditional pasture, modern pasture, fodder production grassland and overgrown grassland. This was done through the construction of spectral response curves, a coincident spectral plot and a contingency matrix as well as by calculating the transformed divergence for the spectral signatures, all based on training samples from the TM imagery. Substantial differences in spectral discrimination potential between imagery from the beginning of the growing season and the middle of summer were found. This is because the spectral responses for these five grassland types converge as the peak of the growing season draws nearer. Recreational grassland shows a consistent discrimination advantage over other grassland types, whereas modern pasture is most easily confused. Traditional pasture land, perhaps the most biologically valuable grassland type, can be spectrally discriminated from other grassland types with satisfactory success rates provided early growing season imagery is used.
Resumo:
Rust, caused by Puccinia psidii, is one of the most important diseases affecting eucalyptus in Brazil. This pathogen causes disease in mini-clonal garden and in young plants in the field, especially in leaves and juvenile shoots. Favorable climate conditions for infection by this pathogen in eucalyptus include temperature between 18 and 25 ºC, together with at least 6-hour leaf wetness periods, for 5 to 7 consecutive days. Considering the interaction between the environment and the pathogen, this study aimed to evaluate the potential impact of global climate changes on the spatial distribution of areas of risk for the occurrence of eucalyptus rust in Brazil. Thus, monthly maps of the areas of risk for the occurrence of this disease were elaborated, considering the current climate conditions, based on a historic series between 1961 and 1990, and the future scenarios A2 and B2, predicted by IPCC. The climate conditions were classified into three categories, according to the potential risk for the disease occurrence, considering temperature (T) and air relative humidity (RH): i) high risk (18 < T < 25 ºC and RH > 90%); ii) medium risk (18 < T < 25 ºC and RH < 90%; T< 18 or T > 25 ºC and RH > 90%); and iii) low risk (T < 18 or T > 25 ºC and RH < 90%). Data about the future climate scenarios were supplied by GCM Change Fields. In this study, the simulation model Hadley Centers for Climate Prediction and Research (HadCm3) was adopted, using the software Idrisi 32. The obtained results led to the conclusion that there will be a reduction in the area favorable to eucalyptus rust occurrence, and such a reduction will be gradual for the decades of 2020, 2050 and 2080 but more marked in scenario A2 than in B2. However, it is important to point out that extensive areas will still be favorable to the disease development, especially in the coldest months of the year, i.e., June and July. Therefore, the zoning of areas and periods of higher occurrence risk, considering the global climate changes, becomes important knowledge for the elaboration of predicting models and an alert for the integrated management of this disease.
Resumo:
This study aimed at identifying different conditions of coffee plants after harvesting period, using data mining and spectral behavior profiles from Hyperion/EO1 sensor. The Hyperion image, with spatial resolution of 30 m, was acquired in August 28th, 2008, at the end of the coffee harvest season in the studied area. For pre-processing imaging, atmospheric and signal/noise effect corrections were carried out using Flaash and MNF (Minimum Noise Fraction Transform) algorithms, respectively. Spectral behavior profiles (38) of different coffee varieties were generated from 150 Hyperion bands. The spectral behavior profiles were analyzed by Expectation-Maximization (EM) algorithm considering 2; 3; 4 and 5 clusters. T-test with 5% of significance was used to verify the similarity among the wavelength cluster means. The results demonstrated that it is possible to separate five different clusters, which were comprised by different coffee crop conditions making possible to improve future intervention actions.
Resumo:
The knowledge of the spatial variability of noise levels and the build of kriging maps can help the evaluation of the salubrity of environments occupied by agricultural workers. Therefore, the objective of this research was to characterize the spatial variability of the noise level generated by four agricultural machines, using geostatistics, and to verify if the values are within the limits of human comfort. The evaluated machines were: harvester, chainsaw, brushcutter and tractor. The data were collected at the height of the operator's ear and at different distances. Through the results, it was possible to verify that the use of geostatistics, by kriging technique, made it possible to define areas with different levels for the data collected. With exception of the harvester, all of machines presented noise levels above than 85 dB (A) near to the operator, demanding the use of hearing protection.
Resumo:
A study about the spatial variability of data of soil resistance to penetration (RSP) was conducted at layers 0.0-0.1 m, 0.1-0.2 m and 0.2-0.3 m depth, using the statistical methods in univariate forms, i.e., using traditional geostatistics, forming thematic maps by ordinary kriging for each layer of the study. It was analyzed the RSP in layer 0.2-0.3 m depth through a spatial linear model (SLM), which considered the layers 0.0-0.1 m and 0.1-0.2 m in depth as covariable, obtaining an estimation model and a thematic map by universal kriging. The thematic maps of the RSP at layer 0.2-0.3 m depth, constructed by both methods, were compared using measures of accuracy obtained from the construction of the matrix of errors and confusion matrix. There are similarities between the thematic maps. All maps showed that the RSP is higher in the north region.
Resumo:
This study aimed to evaluate the spatial variability of leaf content of macro and micronutrients. The citrus plants orchard with 5 years of age, planted at regular intervals of 8 x 7 m, was managed under drip irrigation. Leaf samples were collected from each plant to be analyzed in the laboratory. Data were analyzed using the software R, version 2.5.1 Copyright (C) 2007, along with geostatistics package GeoR. All contents of macro and micronutrients studied were adjusted to normal distribution and showed spatial dependence.The best-fit models, based on the likelihood, for the macro and micronutrients were the spherical and matern. It is suggest for the macronutrients nitrogen, phosphorus, potassium, calcium, magnesium and sulfur the minimum distances between samples of 37; 58; 29; 63; 46 and 15 m respectively, while for the micronutrients boron, copper, iron, manganese and zinc, the distances suggests are 29; 9; 113; 35 and 14 m, respectively.
Resumo:
Taking into account that the sampling intensity of soil attributes is a determining factor for applying of concepts of precision agriculture, this study aims to determine the spatial distribution pattern of soil attributes and corn yield at four soil sampling intensities and verify how sampling intensity affects cause-effect relationship between soil attributes and corn yield. A 100-referenced point sample grid was imposed on the experimental site. Thus, each sampling cell encompassed an area of 45 m² and was composed of five 10-m long crop rows, where referenced points were considered the center of the cell. Samples were taken from at 0 to 0.1 m and 0.1 to 0.2 m depths. Soil chemical attributes and clay content were evaluated. Sampling intensities were established by initial 100-point sampling, resulting data sets of 100; 75; 50 and 25 points. The data were submitted to descriptive statistical and geostatistics analyses. The best sampling intensity to know the spatial distribution pattern was dependent on the soil attribute being studied. The attributes P and K+ content showed higher spatial variability; while the clay content, Ca2+, Mg2+ and base saturation values (V) showed lesser spatial variability. The spatial distribution pattern of clay content and V at the 100-point sampling were the ones which best explained the spatial distribution pattern of corn yield.