930 resultados para Source and sink
Resumo:
With the development of the Internet-of-Things, more and more IoT platforms come up with different structures and characteristics. Making balance of their advantages and disadvantages, we should choose the suitable platform in differ- ent scenarios. For this project, I make comparison of a cloud-based centralized platform, Microsoft Azure IoT hub and a fully distributed platform, Sensi- bleThings. Quantitative comparison is made for performance by 2 scenarios, messages sending speed adds up, devices lie in different location. General com- parison is made for security, utilization and the storage. Finally I draw the con- clusion that SensibleThings performs more stable when a lot of messages push- es to the platform. Microsoft Azure has better geographic expansion. For gener- al comparison, Microsoft Azure IoT hub has better security. The requirement of local device for Microsoft Azure IoT hub is lower than SensibleThings. The SensibleThings are open source and free while Microsoft Azure follow the con- cept “pay as you go” with many throttling limitations for different editions. Microsoft is more user-friendly.
Resumo:
Multiphase flows, type oil–water-gas are very common among different industrial activities, such as chemical industries and petroleum extraction, and its measurements show some difficulties to be taken. Precisely determining the volume fraction of each one of the elements that composes a multiphase flow is very important in chemical plants and petroleum industries. This work presents a methodology able to determine volume fraction on Annular and Stratified multiphase flow system with the use of neutrons and artificial intelligence, using the principles of transmission/scattering of fast neutrons from a 241Am-Be source and measurements of point flow that are influenced by variations of volume fractions. The proposed geometries used on the mathematical model was used to obtain a data set where the thicknesses referred of each material had been changed in order to obtain volume fraction of each phase providing 119 compositions that were used in the simulation with MCNP-X –computer code based on Monte Carlo Method that simulates the radiation transport. An artificial neural network (ANN) was trained with data obtained using the MCNP-X, and used to correlate such measurements with the respective real fractions. The ANN was able to correlate the data obtained on the simulation with MCNP-X with the volume fractions of the multiphase flows (oil-water-gas), both in the pattern of annular flow as stratified, resulting in a average relative error (%) for each production set of: annular (air= 3.85; water = 4.31; oil=1.08); stratified (air=3.10, water 2.01, oil = 1.45). The method demonstrated good efficiency in the determination of each material that composes the phases, thus demonstrating the feasibility of the technique.
Resumo:
Land use in the river catchments of tropical North Queensland appears to have increased the export of sediment and nutrients to the coast. Although evidence of harmful effect of sediment on coastal and riverine ecosystems is limited, there is a growing concern about its possible negative impacts. Sugarcane cultivation on the floodplains of the tropical North Queensland river catchments is thought to be an important source of excess sediment in the river drainage systems. Minimum-tillage, trash blanket harvesting has been shown to reduce erosion from sloping sugarcane fields, but in the strongly modified floodplain landscape other elements (e.g. drains, water furrows and headlands) could still be important sediment sources. The main objectives of this thesis are to quantify the amount of sediment coming from low-lying cane land and identify the important sediment sources in the landscape. The results of this thesis enable sugarcane farmers to take targeted measures for further reduction of the export of sediment and nutrients. Sediment budgets provide a useful approach to identify and quantify potential sediment sources. For this study a sediment budget is calculated for a part of the Ripple Creek catchment, which is a sub-catchment of the Lower Herbert River. The input of sediment from all potential sources in cane land and the storage of sediment within the catchment have been quantified and compared with the output of sediment from the catchment. Input from, and storage on headlands, main drains, minor drains and water furrows, was estimated from erosion pin and surface profile measurements. Input from forested upland, input from fields and the output at the outlet of the catchment was estimated with discharge data from gauged streams and flumes. Data for the sediment budget were collected during two ‘wet’-seasons: 1999-2000 and 2000-2001. The results of the sediment budget indicate that this tropical floodplain area is a net source of sediment. Plant cane fields, which do not have a protective trash cover, were the largest net source of sediment during the 1999-2000 season. Sediment input from water furrows was higher, but there was also considerable storage of sediment in this landscape element. Headlands tend to act as sinks. The source or sink function of drains is less clear, but seems to depend on their shape and vegetation cover. An important problem in this study is the high uncertainty in the estimates of the sediment budget components and is, for example, likely to be the cause of the imbalance in the sediment budget. High uncertainties have particularly affected the results from the 20002001 season. The main source of uncertainty is spatial variation in the erosion and deposition processes. Uncertainty has to be taken into consideration when interpreting the budget results. The observation of a floodplain as sediment source contradicts the general understanding that floodplains are areas of sediment storage within river catchments. A second objective of this thesis was therefore to provide an answer to the question: how can floodplains in the tropical North Queensland catchments can be a source of sediment? In geomorphic literature various factors have been pointed out, that could control floodplain erosion processes. However, their importance is not 'uniquely identified'. Among the most apparent factors are the stream power of the floodwater and the resistance of the floodplain surface both through its sedimentary composition and the vegetation cover. If the cultivated floodplains of the North Queensland catchments are considered in the light of these factors, there is a justified reason to expect them to be a sediment source. Cultivation has lowered the resistance of their surface; increased drainage has increased the drainage velocity and flood control structures have altered flooding patterns. For the Ripple Creek floodplain four qualitative scenarios have been developed that describe erosion and deposition under different flow conditions. Two of these scenarios were experienced during the budget study, involving runoff from local hillslopes and heavy rainfall, which caused floodplain erosion. In the longer term larger flood events, involving floodwater from the Herbert River, may lead to different erosion and deposition processes. The present study has shown that the tropical floodplain of the Herbert River catchment can be a source of sediment under particular flow conditions. It has also shown which elements in the sugarcane landscape are the most important sediment sources under these conditions. This understanding will enable sugarcane farmers to further reduce sediment export from cane land and prevent the negative impact this may have on the North Queensland coastal ecosystems.
Resumo:
Terrestrial planets produce crusts as they differentiate. The Earth’s bi-modal crust, with a high-standing granitic continental crust and a low-standing basaltic oceanic crust, is unique in our solar system and links the evolution of the interior and exterior of this planet. Here I present geochemical observations to constrain processes accompanying crustal formation and evolution. My approach includes geochemical analyses, quantitative modeling, and experimental studies. The Archean crustal evolution project represents my perspective on when Earth’s continental crust began forming. In this project, I utilized critical element ratios in sedimentary records to track the evolution of the MgO content in the upper continental crust as a function time. The early Archean subaerial crust had >11 wt. % MgO, whereas by the end of Archean its composition had evolved to about 4 wt. % MgO, suggesting a transition of the upper crust from a basalt-like to a more granite-like bulk composition. Driving this fundamental change of the upper crustal composition is the widespread operation of subduction processes, suggesting the onset of global plate tectonics at ~ 3 Ga (Abstract figure). Three of the chapters in this dissertation leverage the use of Eu anomalies to track the recycling of crustal materials back into the mantle, where Eu anomaly is a sensitive measure of the element’s behavior relative to neighboring lanthanoids (Sm and Gd) during crustal differentiation. My compilation of Sm-Eu-Gd data for the continental crust shows that the average crust has a net negative Eu anomaly. This result requires recycling of Eu-enriched lower continental crust to the mantle. Mass balance calculations require that about three times the mass of the modern continental crust was returned into the mantle over Earth history, possibly via density-driven recycling. High precision measurements of Eu/Eu* in selected primitive glasses of mid-ocean ridge basalt (MORB) from global MORs, combined with numerical modeling, suggests that the recycled lower crustal materials are not found within the MORB source and may have at least partially sank into the lower mantle where they can be sampled by hot spot volcanoes. The Lesser Antilles Li isotope project provides insights into the Li systematics of this young island arc, a representative section of proto-continental crust. Martinique Island lavas, to my knowledge, represent the only clear case in which crustal Li is recycled back into their mantle source, as documented by the isotopically light Li isotopes in Lesser Antilles sediments that feed into the fore arc subduction trench. By corollary, the mantle-like Li signal in global arc lavas is likely the result of broadly similar Li isotopic compositions between the upper mantle and bulk subducting sediments in most arcs. My PhD project on Li diffusion mechanism in zircon is being carried out in extensive collaboration with multiple institutes and employs analytical, experimental and modeling studies. This ongoing project, finds that REE and Y play an important role in controlling Li diffusion in natural zircons, with Li partially coupling to REE and Y to maintain charge balance. Access to state-of-art instrumentation presented critical opportunities to identify the mechanisms that cause elemental fractionation during laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis. My work here elucidates the elemental fractionation associated with plasma plume condensation during laser ablation and particle-ion conversion in the ICP.
Resumo:
U of I Only
Resumo:
Malnutrition, as a global problem, is mainly caused by low level of mineral elements in staple food (deficient soil). Biofortification is based on selection of genotypes with enhanced concentration of mineral elements in grain, as well as decreased concentration of substances which interfere bioavailability of mineral elements in gut (like phytic acid), and increased content of substances that increase availability (such as β-carotene). The experiment with 51 maize ( Zea mays L.) inbred lines with different heterotic background was set up in order to evaluate chemical composition of grain and to determine the relations between phytic acid (PA), β-carotene, and mineral elements: Mg, Fe, Mn, and Zn. The highest average phytate, β-carotene, Fe, and Mn content was found in grain of inbreds from Lancaster heterotic group. The highest content of Mg was in grain of Independent source and Zn in grain of BSSS group. Increased level of Fe and Mn in Lancaster lines could be partially affected by higher PA content in grain, while increased β-carotene content could improve Mn and Zn availability from grain of BSSS genotypes and Mg availability from Lancaster inbreds. It is important to underline that PA reduction is followed by Zn content increase in grain of Lancaster heterotic group, as well as that variations in Mg, Fe, and Mn contents are independent on PA status in inbreds from Independent source, indicating that the genotypes with higher Mg, Fe and Mn status from this group could serve as favorable source for improved Mg, Fe, and Mn absorption.
Resumo:
Calcium sulfoaluminate (CSA) cements/mortars are receiving increasing attention since their manufacture produces less CO2 than ordinary Portland cement (OPC) (up to 22% of decrease depending on its composition). These systems are complex and there are many parameters affecting their hydration mechanism, such as water-to-cement (w/c) ratio, type and amount of sulfate source, and so on. Low w/c ratios, within certain limits, may reduce the porosity and consequently, improve the mechanical strengths. However, it is accompanied by an increasing of viscosity and lack of both workability and homogeneity, with the consequent negative effect on the mechanical properties. The dispersion of the particles through the adsorption of the right amount and type of additives, such as superplasticizers, is a key point to improve the workability of mortars allowing both the preparation of homogeneous mixtures and the reduction of the amount of mixing water. This work deals with the preparation and optimization of homogeneous CSA-mortars with improved mechanical strengths. The optimum amount of superplasticizer was optimized through rheological measurements. The effect of different amounts of the superplasticizer on the viscosity of the mortars, its hydration mechanism and corresponding mechanical properties has been studied and will be discussed.
Fictitious capital and the elusive quest in understanding its implications : illusions and paradoxes
Resumo:
This paper deals with the interaction between fictitious capital and the neoliberal model of growth and distribution, inspired by the classical economic tradition. Our renewed interest in this literature has a close connection with the recent international crisis in the capitalist economy. However, this discussion takes as its point of departure the fact that standard economic theory teaches that financial capital, in this world of increasing globalization, leads to new investment opportunities which improve levels of growth, employment, income distribution, and equilibrium. Accordingly, it is said that such financial resources expand the welfare of people and countries worldwide. Here we examine some illusions and paradoxes of such a paradigm. We show some theoretical and empirical consequences of this vision, which are quite different and have harmful constraints.
Resumo:
Natural radioactive tracer-based assessments of basin-scale submarine groundwater discharge (SGD) are well developed. However, SGD takes place in different modes and the flow and discharge mechanisms involved occur over a wide range of spatial and temporal scales. Quantifying SGD while discriminating its source functions therefore remains a major challenge. However, correctly identifying both the fluid source and composition is critical. When multiple sources of the tracer of interest are present, failure to adequately discriminate between them leads to inaccurate attribution and the resulting uncertainties will affect the reliability of SGD solute loading estimates. This lack of reliability then extends to the closure of local biogeochemical budgets, confusing measures aiming to mitigate pollution. Here, we report a multi-tracer study to identify the sources of SGD, distinguish its component parts and elucidate the mechanisms of their dispersion throughout the Ria Formosa – a seasonally hypersaline lagoon in Portugal. We combine radon budgets that determine the total SGD (meteoric + recirculated seawater) in the system with stable isotopes in water (δ2H, δ18O), to specifically identify SGD source functions and characterize active hydrological pathways in the catchment. Using this approach, SGD in the Ria Formosa could be separated into two modes, a net meteoric water input and another involving no net water transfer, i.e., originating in lagoon water re-circulated through permeable sediments. The former SGD mode is present occasionally on a multi-annual timescale, while the latter is a dominant feature of the system. In the absence of meteoric SGD inputs, seawater recirculation through beach sediments occurs at a rate of ∼ 1.4 × 106 m3 day−1. This implies that the entire tidal-averaged volume of the lagoon is filtered through local sandy sediments within 100 days ( ∼ 3.5 times a year), driving an estimated nitrogen (N) load of ∼ 350 Ton N yr−1 into the system as NO3−. Land-borne SGD could add a further ∼ 61 Ton N yr−1 to the lagoon. The former source is autochthonous, continuous and responsible for a large fraction (59 %) of the estimated total N inputs into the system via non-point sources, while the latter is an occasional allochthonous source capable of driving new production in the system.
Resumo:
Crosswell data set contains a range of angles limited only by the geometry of the source and receiver configuration, the separation of the boreholes and the depth to the target. However, the wide angles reflections present in crosswell imaging result in amplitude-versus-angle (AVA) features not usually observed in surface data. These features include reflections from angles that are near critical and beyond critical for many of the interfaces; some of these reflections are visible only for a small range of angles, presumably near their critical angle. High-resolution crosswell seismic surveys were conducted over a Silurian (Niagaran) reef at two fields in northern Michigan, Springdale and Coldspring. The Springdale wells extended to much greater depths than the reef, and imaging was conducted from above and from beneath the reef. Combining the results from images obtained from above with those from beneath provides additional information, by exhibiting ranges of angles that are different for the two images, especially for reflectors at shallow depths, and second, by providing additional constraints on the solutions for Zoeppritz equations. Inversion of seismic data for impedance has become a standard part of the workflow for quantitative reservoir characterization. Inversion of crosswell data using either deterministic or geostatistical methods can lead to poor results with phase change beyond the critical angle, however, the simultaneous pre-stack inversion of partial angle stacks may be best conducted with restrictions to angles less than critical. Deterministic inversion is designed to yield only a single model of elastic properties (best-fit), while the geostatistical inversion produces multiple models (realizations) of elastic properties, lithology and reservoir properties. Geostatistical inversion produces results with far more detail than deterministic inversion. The magnitude of difference in details between both types of inversion becomes increasingly pronounced for thinner reservoirs, particularly those beyond the vertical resolution of the seismic. For any interface imaged from above and from beneath, the results AVA characters must result from identical contrasts in elastic properties in the two sets of images, albeit in reverse order. An inversion approach to handle both datasets simultaneously, at pre-critical angles, is demonstrated in this work. The main exploration problem for carbonate reefs is determining the porosity distribution. Images of elastic properties, obtained from deterministic and geostatistical simultaneous inversion of a high-resolution crosswell seismic survey were used to obtain the internal structure and reservoir properties (porosity) of Niagaran Michigan reef. The images obtained are the best of any Niagaran pinnacle reef to date.
Resumo:
Tetrachloroethene (PCE) and trichloroethene (TCE) form dense non-aqueous phase liquids (DNAPLs), which are persistent groundwater contaminants. DNAPL dissolution can be "bioenhanced" via dissolved contaminant biodegradation at the DNAPL-water interface. This research hypothesized that: (1) competitive interactions between different dehalorespiring strains can significantly impact the bioenhancement effect, and extent of PCE dechlorination; and (2) hydrodynamics will affect the outcome of competition and the potential for bioenhancement and detoxification. A two-dimensional coupled flowtransport model was developed, with a DNAPL pool source and multiple microbial species. In the scenario presented, Dehalococcoides mccartyi 195 competes with Desulfuromonas michiganensis for the electron acceptors PCE and TCE. Simulations under biostimulation and low velocity (vx) conditions suggest that the bioenhancement with Dsm. michiganensis alone was modestly increased by Dhc. mccartyi 195. However, the presence of Dhc. mccartyi 195 enhanced the extent of PCE transformation. Hydrodynamic conditions impacted the results by changing the dominant population under low and high vx conditions.
Resumo:
Elemental analysis can become an important piece of evidence to assist the solution of a case. The work presented in this dissertation aims to evaluate the evidential value of the elemental composition of three particular matrices: ink, paper and glass. In the first part of this study, the analytical performance of LIBS and LA-ICP-MS methods was evaluated for paper, writing inks and printing inks. A total of 350 ink specimens were examined including black and blue gel inks, ballpoint inks, inkjets and toners originating from several manufacturing sources and/or batches. The paper collection set consisted of over 200 paper specimens originating from 20 different paper sources produced by 10 different plants. Micro-homogeneity studies show smaller variation of elemental compositions within a single source (i.e., sheet, pen or cartridge) than the observed variation between different sources (i.e., brands, types, batches). Significant and detectable differences in the elemental profile of the inks and paper were observed between samples originating from different sources (discrimination of 87 – 100% of samples, depending on the sample set under investigation and the method applied). These results support the use of elemental analysis, using LA-ICP-MS and LIBS, for the examination of documents and provide additional discrimination to the currently used techniques in document examination. In the second part of this study, a direct comparison between four analytical methods (µ-XRF, solution-ICP-MS, LA-ICP-MS and LIBS) was conducted for glass analyses using interlaboratory studies. The data provided by 21 participants were used to assess the performance of the analytical methods in associating glass samples from the same source and differentiating different sources, as well as the use of different match criteria (confidence interval (±6s, ±5s, ±4s, ±3s, ±2s), modified confidence interval, t-test (sequential univariate, p=0.05 and p=0.01), t-test with Bonferroni correction (for multivariate comparisons), range overlap, and Hotelling’s T2 tests. Error rates (Type 1 and Type 2) are reported for the use of each of these match criteria and depend on the heterogeneity of the glass sources, the repeatability between analytical measurements, and the number of elements that were measured. The study provided recommendations for analytical performance-based parameters for µ-XRF and LA-ICP-MS as well as the best performing match criteria for both analytical techniques, which can be applied now by forensic glass examiners.
Resumo:
O objetivo primordial deste trabalho foi estabelecer um roteiro tecnológico para aplicação das tecnologias de “Captação, Utilização e Sequestração de Carbono - CCUS” em Portugal. Para o efeito procedeu-se à identificação da origem das maiores fontes emissoras estacionárias industriais de CO2, adotando como critério o valor mínimo de 1×105 ton CO2/ano e limitado apenas ao território continental. Com base na informação recolhida e referente aos dados oficiais mais recentes (ano de 2013), estimou-se que o volume de emissões industriais de CO2 possível de captar em Portugal, corresponde a cerca de 47 % do valor global das emissões industriais, sendo oriundo de três setores de atividade industrial: produção de cimento, de pasta de papel e centrais termoelétricas a carvão. A maioria das grandes fontes emissoras industriais localiza-se no litoral do país, concentrando-se entre Aveiro e Sines. Pelas condicionantes geográficas do país e, sobretudo pela vantagem de já existir uma rede de gasodutos para o transporte de gás natural, com as respetivas infraestruturas de apoio associadas, admitiu-se que o cenário mais favorável para o transporte do CO2 captado será a criação de um sistema de transporte por gasoduto específico para o CO2. Como critério de compatibilização da proximidade das fontes emissoras de CO2 com potenciais locais para o armazenamento geológico das correntes captadas, adotou-se a distância máxima de 100 km, considerada adequada perante a dimensão do território nacional e as características do tecido industrial nacional. Efetuou-se a revisão das tecnologias de captação de CO2 disponíveis, quer comercialmente, quer em níveis avançados de demonstração e procedeu-se à análise exploratória da adequação desses diferentes métodos de captação a cada um dos setores de atividade industrial previamente identificados com emissões de CO2 suscetíveis de serem captadas. Na perspetiva da melhor integração dos processos, esta análise preliminar tomou em consideração as características das misturas gasosas, assim como o contexto industrial correspondente e o processo produtivo que lhe dá origem. As possibilidades de utilização industrial do CO2 sujeito à captação no país foram tratadas neste trabalho de forma genérica dado que a identificação de oportunidades reais para a utilização de correntes de CO2 captadas exige uma análise de compatibilização das necessidades efetivas de utilização de CO2 por parte de potenciais utilizadores industriais que carece da caracterização prévia das propriedades dessas correntes. Este é um tipo de análise muito específico que pressupõe o interesse mútuo de diferentes intervenientes: agentes emissores de CO2, operadores de transporte e, principalmente, potenciais utilizadores de CO2 como: matéria-prima para a síntese de compostos, solvente de extração supercrítica na indústria alimentar ou farmacêutica, agente corretor de pH em tratamento de efluentes, biofixação por fotossíntese, ou outra das aplicações possíveis identificadas para o CO2 captado. A última etapa deste estudo consistiu na avaliação das possibilidades de armazenamento geológico do CO2 captado e envolveu a identificação, nas bacias sedimentares nacionais, de formações geológicas com características reconhecidas como sendo boas indicações para o armazenamento de CO2 de forma permanente e em segurança. Seguiu-se a metodologia preconizada por organizações internacionais aplicando à situação nacional, critérios de seleção e de segurança que se encontram reconhecidamente definidos. A adequação para o armazenamento de CO2 das formações geológicas pré-selecionadas terá que ser comprovada por estudos adicionais que complementem os dados já existentes sobre as características geológicas destas formações e, mais importante ainda, por testes laboratoriais e ensaios de injeção de CO2 que possam fornecer informação concreta para estimar a capacidade de sequestração e de retenção de CO2 nestas formações e estabelecer os modelos geológicos armazenamento que permitam identificar e estimar, de forma concreta e objetiva, os riscos associados à injeção e armazenamento de CO2.
Resumo:
Historically, domestic tasks such as preparing food and washing and drying clothes and dishes were done by hand. In a modern home many of these chores are taken care of by machines such as washing machines, dishwashers and tumble dryers. When the first such machines came on the market customers were happy that they worked at all! Today, the costs of electricity and customers’ environmental awareness are high, so features such as low electricity, water and detergent use strongly influence which household machine the customer will buy. One way to achieve lower electricity usage for the tumble dryer and the dishwasher is to add a heat pump system. The function of a heat pump system is to extract heat from a lower temperature source (heat source) and reject it to a higher temperature sink (heat sink) at a higher temperature level. Heat pump systems have been used for a long time in refrigerators and freezers, and that industry has driven the development of small, high quality, low price heat pump components. The low price of good quality heat pump components, along with an increased willingness to pay extra for lower electricity usage and environmental impact, make it possible to introduce heat pump systems in other household products. However, there is a high risk of failure with new features. A number of household manufacturers no longer exist because they introduced poorly implemented new features, which resulted in low quality and product performance. A manufacturer must predict whether the future value of a feature is high enough for the customer chain to pay for it. The challenge for the manufacturer is to develop and produce a high-performance heat pump feature in a household product with high quality, predict future willingness to pay for it, and launch it at the right moment in order to succeed. Tumble dryers with heat pump systems have been on the market since 2000. Paper I reports on the development of a transient simulation model of a commercial heat pump tumble dryer. The measured and simulated results were compared with good similarity. The influence of the size of the compressor and the condenser was investigated using the validated simulation model. The results from the simulation model show that increasing the cylinder volume of the compressor by 50% decreases the drying time by 14% without using more electricity. Paper II is a concept study of adding a heat pump system to a dishwasher in order to decrease the total electricity usage. The dishwasher, dishware and water are heated by the condenser, and the evaporator absorbs the heat from a water tank. The majority of the heat transfer to the evaporator occurs when ice is generated in the water tank. An experimental setup and a transient simulation model of a heat pump dishwasher were developed. The simulation results show a 24% reduction in electricity use compared to a conventional dishwasher heated with an electric element. The simulation model was based on an experimental setup that was not optimised. During the study it became apparent that it is possible to decrease electricity usage even more with the next experimental setup.
Resumo:
Near-infrared polarimetry observation is a powerful tool to study the central sources at the center of the Milky Way. My aim of this thesis is to analyze the polarized emission present in the central few light years of the Galactic Center region, in particular the non-thermal polarized emission of Sagittarius~A* (Sgr~A*), the electromagnetic manifestation of the super-massive black hole, and the polarized emission of an infrared-excess source in the literature referred to as DSO/G2. This source is in orbit about Sgr~A*. In this thesis I focus onto the Galactic Center observations at $\lambda=2.2~\mu m$ ($K_\mathrm{s}$-band) in polarimetry mode during several epochs from 2004 to 2012. The near-infrared polarized observations have been carried out using the adaptive optics instrument NAOS/CONICA and Wollaston prism at the Very Large Telescope of ESO (European Southern Observatory). Linear polarization at 2.2 $\mu m$, its flux statistics and time variation, can be used to constrain the physical conditions of the accretion process onto the central super-massive black hole. I present a statistical analysis of polarized $K_\mathrm{s}$-band emission from Sgr~A* and investigate the most comprehensive sample of near-infrared polarimetric light curves of this source up to now. I find several polarized flux excursions during the years and obtain an exponent of about 4 for the power-law fitted to polarized flux density distribution of fluxes above 5~mJy. Therefore, this distribution is closely linked to the single state power-law distribution of the total $K_\mathrm{s}$-band flux densities reported earlier by us. I find polarization degrees of the order of 20\%$\pm$10\% and a preferred polarization angle of $13^o\pm15^o$. Based on simulations of polarimetric measurements given the observed flux density and its uncertainty in orthogonal polarimetry channels, I find that the uncertainties of polarization parameters under a total flux density of $\sim 2\,{\mathrm{mJy}}$ are probably dominated by observational uncertainties. At higher flux densities there are intrinsic variations of polarization degree and angle within rather well constrained ranges. Since the emission is most likely due to optically thin synchrotron radiation, the obtained preferred polarization angle is very likely reflecting the intrinsic orientation of the Sgr~A* system i.e. an accretion disk or jet/wind scenario coupled to the super-massive black hole. Our polarization statistics show that Sgr~A* must be a stable system, both in terms of geometry, and the accretion process. I also investigate an infrared-excess source called G2 or Dusty S-cluster Object (DSO) moving on a highly eccentric orbit around the Galaxy's central black hole, Sgr~A*. I use for the first time the near-infrared polarimetric imaging data to determine the nature and the properties of DSO and obtain an improved $K_\mathrm{s}$-band identification of this source in median polarimetry images of different observing years. The source starts to deviate from the stellar confusion in 2008 data and it does not show a flux density variability based on our data set. Furthermore, I measure the polarization degree and angle of this source and conclude based on the simulations on polarization parameters that it is an intrinsically polarized source with a varying polarization angle as it approaches Sgr~A* position. I use the interpretation of the DSO polarimetry measurements to assess its possible properties.