993 resultados para Solar heater
Resumo:
Canals, A.; Breen, A. R.; Ofman, L.; Moran, P. J.; Fallows, R. A., Estimating random transverse velocities in the fast solar wind from EISCAT Interplanetary Scintillation measurements, Annales Geophysicae, vol. 20, Issue 9, pp.1265-1277
Resumo:
Chaplin, W. J.; Dumbill, A. M.; Elsworth, Y.; Isaak, G. R.; McLeod, C. P.; Miller, B. A.; New, R.; Pint?r, B., Studies of the solar mean magnetic field with the Birmingham Solar-Oscillations Network (BiSON), Monthly Notice of the Royal Astronomical Society, Volume 343, Issue 3, pp. 813-818. RAE2008
Resumo:
Li, Xing, 'Transition region, coronal heating and the fast solar wind', Astronomy and Astrophysics (2003) 406 pp.345-356 RAE2008
Resumo:
Breen, Andrew; Fallows, R. A.; Thomasson, P.; Bisi, M. M., 'Extremely long baseline interplanetary scintillation measurements of solar wind velocity', Journal of Geophysical Research (2006) 111(A8) pp.A08104 RAE2008
Resumo:
Pint?r, B.; Erd?lyi, R.; Goossens, M., Global oscillations in a magnetic solar model. II. Oblique propagation, Astronomy and Astrophysics, Volume 466, Issue 1, April IV 2007, pp.377-388 Pint?r, B.; Erd?lyi, R.; Goossens, M., (2007) 'Global oscillations in a magnetic solar model II. Oblique propagation', Astronomy and Astrophysics 466(1) pp.377-388 RAE2008
Resumo:
Li, Xing; Habbal, S.R., (2005) 'Hybrid simulation of ion cyclotron resonance in the solar wind: evolution of velocity distribution functions', Journal of Geophysical Research 110(A10) pp.A10109 RAE2008
Resumo:
Breen, Andrew; Bisi, M.M.; Fallows, R.A.; Habbal, S.R., (2007) 'Large-scale structure of the fast solar wind', Journal of Geophysical Research 112(A6) pp.A06101 RAE2008
Resumo:
Concentrating solar power is an important way of providing renewable energy. Model simulation approaches play a fundamental role in the development of this technology and, for this, an accurately validation of the models is crucial. This work presents the validation of the heat loss model of the absorber tube of a parabolic trough plant by comparing the model heat loss estimates with real measurements in a specialized testing laboratory. The study focuses on the implementation in the model of a physical-meaningful and widely valid formulation of the absorber total emissivity depending on the surface’s temperature. For this purpose, the spectral emissivity of several absorber’s samples are measured and, with these data, the absorber total emissivity curve is obtained according to Planck function. This physical-meaningful formulation is used as input parameter in the heat loss model and a successful validation of the model is performed. Since measuring the spectral emissivity of the absorber surface may be complex and it is sample-destructive, a new methodology for the absorber’s emissivity characterization is proposed. This methodology provides an estimation of the absorber total emissivity, retaining its physical meaning and widely valid formulation according to Planck function with no need for direct spectral measurements. This proposed method is also successfully validated and the results are shown in the present paper.
Resumo:
Solar Energy is a clean and abundant energy source that can help reduce reliance on fossil fuels around which questions still persist about their contribution to climate and long-term availability. Monolithic triple-junction solar cells are currently the state of the art photovoltaic devices with champion cell efficiencies exceeding 40%, but their ultimate efficiency is restricted by the current-matching constraint of series-connected cells. The objective of this thesis was to investigate the use of solar cells with lattice constants equal to InP in order to reduce the constraint of current matching in multi-junction solar cells. This was addressed by two approaches: Firstly, the formation of mechanically stacked solar cells (MSSC) was investigated through the addition of separate connections to individual cells that make up a multi-junction device. An electrical and optical modelling approach identified separately connected InGaAs bottom cells stacked under dual-junction GaAs based top cells as a route to high efficiency. An InGaAs solar cell was fabricated on an InP substrate with a measured 1-Sun conversion efficiency of 9.3%. A comparative study of adhesives found benzocyclobutene to be the most suitable for bonding component cells in a mechanically stacked configuration owing to its higher thermal conductivity and refractive index when compared to other candidate adhesives. A flip-chip process was developed to bond single-junction GaAs and InGaAs cells with a measured 4-terminal MSSC efficiency of 25.2% under 1-Sun conditions. Additionally, a novel InAlAs solar cell was identified, which can be used to provide an alternative to the well established GaAs solar cell. As wide bandgap InAlAs solar cells have not been extensively investigated for use in photovoltaics, single-junction cells were fabricated and their properties relevant to PV operation analysed. Minority carrier diffusion lengths in the micrometre range were extracted, confirming InAlAs as a suitable material for use in III-V solar cells, and a 1-Sun conversion efficiency of 6.6% measured for cells with 800 nm thick absorber layers. Given the cost and small diameter of commercially available InP wafers, InGaAs and InAlAs solar cells were fabricated on alternative substrates, namely GaAs. As a first demonstration the lattice constant of a GaAs substrate was graded to InP using an InxGa1-xAs metamorphic buffer layer onto which cells were grown. This was the first demonstration of an InAlAs solar cell on an alternative substrate and an initial step towards fabricating these cells on Si. The results presented offer a route to developing multi-junction solar cell devices based on the InP lattice parameter, thus extending the range of available bandgaps for high efficiency cells.
Resumo:
The power output of dual-junction mechanically stacked solar cells comprising different sub-cell materials in a terrestrial concentrating photovoltaic module has been evaluated. The ideal bandgap combination of both cells in a stack was found using EtaOpt. A combination of 1.4 eV and 0.7 eV has been found to produce the highest photovoltaic conversion efficiency under the AM1.5 Direct Solar Spectrum with x500 concentration. As EtaOpt does not consider the absorption profile of solar cell materials; the practical power output per unit area of a dual junction mechanically stacked solar cell has been modelled considering the optical absorption co-efficients and thicknesses of the individual solar cells. The model considered a GaAs top cell and a Ge, GaSb, Ga0.47In0.53As or Si bottom cell. It was found that GaSb gives the highest power contribution as a bottom cell in a dual junction configuration followed by Ge and GaInAs. While the additional power provided by a Si bottom cell is less than these it remains a suitable candidate for a bottom cell owing to its lower cost
Resumo:
Gemstone Team SHINE (Students Helping to Implement Natural Energy)
Resumo:
Gemstone Team Grenergy
Resumo:
Spherical silicon solar cells are expected to serve as a technology to reduce silicon usage of photovoltaic (PV) power systems[1, 2, 3]. In order to establish the spherical silicon solar cell, a manufacturing method of uniformly sized silicon particles of 1mm in diameter is required. However, it is difficult to mass-produce the mono-sized silicon particles at low cost by existent processes now. We proposed a new method to generate liquid metal droplets uniformly by applying electromagnetic pinch force to a liquid metal jet[4]. The electromagnetic force was intermittently applied to the liquid metal jet issued from a nozzle in order to fluctuate the surface of the jet. As the fluctuation grew, the liquid jet was broken up into small droplets according to a frequency of the intermittent electromagnetic force. Firstly, a preliminary experiment was carried out. A single pulse current was applied instantaneously to a single turn coil around a molten gallium jet. It was confirmed that the jet could be split up by pinch force generated by the current. And then, electromagnetic pinch force was applied intermittently to the jet. It was found that the jet was broken up into mono-sized droplets in the case of a force frequency was equal to a critical frequency[5], which corresponds to a natural disturbance wave length of the jet. Numerical simulations of the droplet generation from the liquid jet were then carried out, which consisted of an electromagnetic analysis and a fluid flow calculation with a free surface of the jet. The simulation results were compared with the experiments and the agreement between the two was quite good.
Resumo:
This article charts the development of the use of thin films of nanoparticulate WO3 and how they have been used to overcome problems associated with other photocatalytic materials and bulk WO3. Current technology is described and the authors' views on the outlook for future development is suggested.
Resumo:
The development of sustainable hydrogen production is a key target in the further facilitation of a hydrogen economy. Solar hydrogen generation through the photolytic splitting of water sensitised by semiconductor materials is attractive as it is both renewable and does not lead to problematic by-products, unlike current hydrogen sources such as natural gas. Consequently, the development of these semiconductor materials has undergone considerable research since their discovery over 30 years ago and it would seem prescient to review the more practical results of this research. Among the critical factors influencing the choice of semiconductor material for photoelectrolysis of water are the band-gap energies, flat band potentials and stability towards photocorrosion; the latter of these points directs us to focus on metal oxides. Careful design of thin films of photocatalyst material can eliminate potential routes of losses in performance, i.e., recombination at grain boundaries. Methods to overcome these problems are discussed such as coupling a photoanode for photolysis of water to a photovoltaic cell in a 'tandem cell' device.