962 resultados para Sodium-channel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of spinel ferrites with composition Zn1-2xNaxFe2+xO4has been performed and the composition range in which single phase samples are obtained has been defined. The characterization of the samples has been carried out from atomic absorption and X-ray fluorescence analyses, X-ray diffraction patterns, Mössbauer spectroscopy and thermomagnetic measurements. It is show that significant loss of Na does exist when the synthesis is performed at high temperatures. When the Na volatilization is avoided spinel oxides with Na content up to 0.25 atoms per unit formula can be obtained. In this case the increase of the interatomic distances leads to differing fundamental magnetic properties as compared to the equivalent lithium-zinc ferrites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In mammals, the presence of excitable cells in muscles, heart and nervous system is crucial and allows fast conduction of numerous biological information over long distances through the generation of action potentials (AP). Voltage-gated sodium channels (Navs) are key players in the generation and propagation of AP as they are responsible for the rising phase of the AP. Navs are heteromeric proteins composed of a large pore-forming a-subunit (Nav) and smaller ß-auxiliary subunits. There are ten genes encoding for Navl.l to Nav1.9 and NaX channels, each possessing its own specific biophysical properties. The excitable cells express differential combinations of Navs isoforms, generating a distinct electrophysiological signature. Noteworthy, only when anchored at the membrane are Navs functional and are participating in sodium conductance. In addition to the intrinsic properties of Navs, numerous regulatory proteins influence the sodium current. Some proteins will enhance stabilization of membrane Navs while others will favour internalization. Maintaining equilibrium between the two is of crucial importance for controlling cellular excitability. The E3 ubiquitin ligase Nedd4-2 is a well-characterized enzyme that negatively regulates the turnover of many membrane proteins including Navs. On the other hand, ß-subunits are known since long to stabilize Navs membrane anchoring. Peripheral neuropathic pain is a disabling condition resulting from nerve injury. It is characterized by the dysregulation of Navs expressed in dorsal root ganglion (DRG) sensory neurons as highlighted in different animal models of neuropathic pain. Among Navs, Nav1.7 and Nav1.8 are abundantly and specifically expressed in DRG sensory neurons and have been recurrently incriminated in nociception and neuropathic pain development. Using the spared nerve injury (SNI) experimental model of neuropathic pain in mice, I observed a specific reduction of Nedd4-2 in DRG sensory neurons. This decrease subsequently led to an upregulation of Nav1.7 and Nav1.8 protein and current, in the axon and the DRG neurons, respectively, and was sufficient to generate neuropathic pain-associated hyperexcitability. Knocking out Nedd4-2 specifically in nociceptive neurons led to the same increase of Nav1.7 and Nav1.8 concomitantly with an increased thermal sensitivity in mice. Conversely, rescuing Nedd4-2 downregulation using viral vector transfer attenuated neuropathic pain mechanical hypersensitivity. This study demonstrates the significant role of Nedd4-2 in regulating cellular excitability in vivo and its involvement in neuropathic pain development. The role of ß-subunits in neuropathic pain was already demonstrated in our research group. Because of their stabilization role, the increase of ßl, ß2 and ß3 subunits in DRGs after SNI led to increased Navs anchored at the membrane. Here, I report a novel mechanism of regulation of a-subunits by ß- subunits in vitro; ßl and ß3-subunits modulate the glycosylation pattern of Nav1.7, which might account for stabilization of its membrane expression. This opens new perspectives for investigation Navs state of glycosylation in ß-subunits dependent diseases, such as in neuropathic pain. - Chez les mammifères, la présence de cellules excitables dans les muscles, le coeur et le système nerveux est cruciale; elle permet la conduction rapide de nombreuses informations sur de longues distances grâce à la génération de potentiels d'action (PA). Les canaux sodiques voltage-dépendants (Navs) sont des participants importants dans la génération et la propagation des PA car ils sont responsables de la phase initiale de dépolarisation du PA. Les Navs sont des protéines hétéromériques composées d'une grande sous-unité a (formant le pore du canal) et de petites sous-unités ß accompagnatrices. Il existe dix gènes qui codent pour les canaux sodiques, du Nav 1.1 au Nav 1.9 ainsi que NaX, chacun possédant des propriétés biophysiques spécifiques. Les cellules excitables expriment différentes combinaisons des différents isoformes de Navs, qui engendrent une signature électrophysiologique distincte. Les Navs ne sont fonctionnels et ne participent à la conductibilité du Na+, que s'ils sont ancrés à la membrane plasmique. En plus des propriétés intrinsèques des Navs, de nombreuses protéines régulatrices influencent également le courant sodique. Certaines protéines vont favoriser l'ancrage et la stabilisation des Navs exprimés à la membrane, alors que d'autres vont plutôt favoriser leur internalisation. Maintenir l'équilibre des deux processus est crucial pour contrôler l'excitabilité cellulaire. Dans ce contexte, Nedd4-2, de la famille des E3 ubiquitin ligase, est une enzyme bien caractérisée qui régule l'internalisation de nombreuses protéines, notamment celle des Navs. Inversement, les sous-unités ß sont connues depuis longtemps pour stabiliser l'ancrage des Navs à la membrane. La douleur neuropathique périphérique est une condition débilitante résultant d'une atteinte à un nerf. Elle est caractérisée par la dérégulation des Navs exprimés dans les neurones sensoriels du ganglion spinal (DRG). Ceci a été démontré à de multiples occasions dans divers modèles animaux de douleur neuropathique. Parmi les Navs, Nav1.7 et Nav1.8 sont abondamment et spécifiquement exprimés dans les neurones sensoriels des DRG et ont été impliqués de façon récurrente dans le développement de la douleur neuropathique. En utilisant le modèle animal de douleur neuropathique d'épargne du nerf sural (spared nerve injury, SNI) chez la souris, j'ai observé une réduction spécifique des Nedd4-2 dans les neurones sensoriels du DRG. Cette diminution avait pour conséquence l'augmentation de l'expression des protéines et des courants de Nav 1.7 et Nav 1.8, respectivement dans l'axone et les neurones du DRG, et était donc suffisante pour créer l'hyperexcitabilité associée à la douleur neuropathique. L'invalidation pour le gène codant pour Nedd4-2 dans une lignée de souris génétiquement modifiées a conduit à de similaires augmentations de Nav1.7 et Nav1.8, parallèlement à une augmentation à la sensibilité thermique. A l'opposé, rétablir une expression normale de Nedd4-2 en utilisant un vecteur viral a eu pour effet de contrecarrer le développement de l'hypersensibilité mécanique lié à ce modèle de douleur neuropathique. Cette étude démontre le rôle important de Nedd4-2 dans la régulation de l'excitabilité cellulaire in vivo et son implication dans le développement des douleurs neuropathiques. Le rôle des sous-unités ß dans les douleurs neuropathiques a déjà été démontré dans notre groupe de recherche. A cause de leur rôle stabilisateur, l'augmentation des sous-unités ßl, ß2 et ß3 dans les DRG après SNI, conduit à une augmentation des Navs ancrés à la membrane. Dans mon travail de thèse, j'ai observé un nouveau mécanisme de régulation des sous-unités a par les sous-unités ß in vitro. Les sous-unités ßl et ß3 régulent l'état de glycosylation du canal Nav1.7, et stabilisent son expression membranaire. Ceci ouvre de nouvelles perspectives dans l'investigation de l'état de glycosylation des Navs dans des maladies impliquant les sous-unités ß, notamment les douleurs neuropathiques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms sustaining high blood pressure in conscious one-kidney, one-clip Goldblatt rats were evaluated with the use of SK&F 64139, a phenylethanolamine N-methyltransferase inhibitor capable of crossing the blood-brain barrier and of captopril, an angiotensin converting enzyme inhibitor. The rats were studied 3 weeks after left renal artery clipping and contralateral nephrectomy. During the developmental phase of hypertension, two groups of rats were maintained on a regular salt (RNa) intake, whereas two other groups were given a low salt (LNa) diet. On the day of the experiment, the base-line mean blood pressure measured in the LNa rats (177.4 +/- 5.2 mm Hg, mean +/- S.E., n = 15) was similar to that measured in the RNa rats (178.7 +/- 5.4 mm Hg, n = 16). SK&F 64139 (12.5 mg p.o.) induced a significantly more pronounced (P less than .001) blood pressure decrease in the RNa rats (-25.6 +/- 3.6 mm Hg, n = 8) than in the LNa rats (-4.3 +/- 3.3 mm Hg, n = 7) during a 90-min observation period. On the other hand, captopril (10 mg p.o.) normalized blood pressure in LNa rats (n = 8), but produced only a 13.4 mm Hg blood pressure drop in RNa rats (n = 8). RNa rats treated with SK&F 64139 were found to have decreased phenylethanolamine N-methyltransferase activity by an average 80% in selected brain stem nuclei when compared with nontreated rats. No significant difference in plasma catecholamine levels was found between the RNa and LNa rats. These results suggest that, in this experimental model of hypertension, the sodium ion might increase the model of hypertension, the sodium ion might increase the vasoconstrictor contribution of the sympathetic system via a centrally mediated neurogenic mechanism while at the same time it decreases the renin-dependency of the high blood pressure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Refractory status epilepticus (RSE)-that is, seizures resistant to at least two antiepileptic drugs (AEDs)-is generally managed with barbiturates, propofol, or midazolam, despite a low level of evidence (Rossetti, 2007). When this approach fails, the need for alternative pharmacologic and nonpharmacologic strategies emerges. These have been investigated even less systematically than the aforementioned compounds, and are often used, sometimes in succession, in cases of extreme refractoriness (Robakis & Hirsch, 2006). Several possibilities are reviewed here. In view of the marked heterogeneity of reported information, etiologies, ages, and comedications, it is extremely difficult to evaluate a given method, not to say to compare different strategies among them. Pharmacologic Approaches Isoflurane and desflurane may complete the armamentarium of anesthetics,' and should be employed in a ''close'' environment, in order to prevent intoxication of treating personnel. c-Aminobutyric acid (GABA)A receptor potentiation represents the putative mechanism of action. In an earlier report, isoflurane was used for up to 55 h in nine patients, controlling seizures in all; mortality was, however, 67% (Kofke et al., 1989). More recently, the use of these inhalational anesthetics was described in seven subjects with RSE, for up to 26 days, with an endtidal concentration of 1.2-5%. All patients required vasopressors, and paralytic ileus occurred in three; outcome was fatal in three patients (43%) (Mirsattari et al., 2004). Ketamine, known as an emergency anesthetic because of its favorable hemodynamic profile, is an N-methyl-daspartate (NMDA) antagonist; the interest for its use in RSE derives from animal works showing loss of GABAA efficacy and maintained NMDA sensitivity in prolonged status epilepticus (Mazarati & Wasterlain, 1999). However, to avoid possible neurotoxicity, it appears safer to combine ketamine with GABAergic compounds (Jevtovic-Todorovic et al., 2001; Ubogu et al., 2003), also because of a likely synergistic effect (Martin & Kapur, 2008). There are few reported cases in humans, describing progressive dosages up to 7.5 mg/kg/h for several days (Sheth & Gidal, 1998; Quigg et al., 2002; Pruss & Holtkamp, 2008), with moderate outcomes. Paraldehyde acts through a yet-unidentified mechanism, and appears to be relatively safe in terms of cardiovascular tolerability (Ramsay, 1989; Thulasimani & Ramaswamy, 2002), but because of the risk of crystal formation and its reactivity with plastic, it should be used only as fresh prepared solution in glass devices (Beyenburg et al., 2000). There are virtually no recent reports regarding its use in adults RSE, whereas rectal paraldehyde in children with status epilepticus resistant to benzodiazepines seems less efficacious than intravenous phenytoin (Chin et al., 2008). Etomidate is another anesthetic agent for which the exact mechanism of action is also unknown, which is also relatively favorable regarding cardiovascular side effects, and may be used for rapid sedation. Its use in RSE was reported in eight subjects (Yeoman et al., 1989). After a bolus of 0.3 mg/kg, a drip of up to 7.2 mg/kg/h for up to 12 days was administered, with hypotension occurring in five patients; two patients died. A reversible inhibition of cortisol synthesis represents an important concern, limiting its widespread use and implying a careful hormonal substitution during treatment (Beyenburg et al., 2000). Several nonsedating approaches have been reported. The use of lidocaine in RSE, a class Ib antiarrhythmic agent modulating sodium channels, was reviewed in 1997 (Walker & Slovis, 1997). Initial boluses up to 5 mg/kg and perfusions of up to 6 mg/kg/h have been mentioned; somewhat surprisingly, at times lidocaine seemed to be successful in controlling seizures in patients who were refractory to phenytoin. The aforementioned dosages should not be overshot, in order to keep lidocaine levels under 5 mg/L and avoid seizure induction (Hamano et al., 2006). A recent pediatric retrospective survey on 57 RSE episodes (37 patients) described a response in 36%, and no major adverse events; mortality was not given (Hamano et al., 2006 Verapamil, a calcium-channel blocker, also inhibits P-glycoprotein, a multidrug transporter that may diminish AED availability in the brain (Potschka et al., 2002). Few case reports on its use in humans are available; this medication nevertheless appears relatively safe (under cardiac monitoring) up to dosages of 360 mg/day (Iannetti et al., 2005). Magnesium, a widely used agent for seizures elicited by eclampsia, has also been anecdotally reported in RSE (Fisher et al., 1988; Robakis & Hirsch, 2006), but with scarce results even at serum levels of 14 mm. The rationale may be found in the physiologic blockage of NMDA channels by magnesium ions (Hope & Blumenfeld, 2005). Ketogenic diet has been prescribed for decades, mostly in children, to control refractory seizures. Its use in RSE as ''ultima ratio'' has been occasionally described: three of six children (Francois et al., 2003) and one adult (Bodenant et al., 2008) were responders. This approach displays its effect subacutely over several days to a few weeks. Because ''malignant RSE'' seems at times to be the consequence of immunologic processes (Holtkamp et al., 2005), a course of immunomodulatory treatment is often advocated in this setting, even in the absence of definite autoimmune etiologies (Robakis & Hirsch, 2006); steroids, adrenocorticotropic hormone (ACTH), plasma exchanges, or intravenous immunoglobulins may be used alone or in sequential combination. Nonpharmacologic Approaches These strategies are described somewhat less frequently than pharmacologic approaches. Acute implantation of vagus nerve stimulation (VNS) has been reported in RSE (Winston et al., 2001; Patwardhan et al., 2005; De Herdt et al., 2009). Stimulation was usually initiated in the operation room, and intensity progressively adapted over a few days up to 1.25 mA (with various regimens regarding the other parameters), allowing a subacute seizure control; one transitory episode of bradycardia/asystole has been described (De Herdt et al., 2009). Of course, pending identification of a definite seizure focus, resective surgery may also be considered in selected cases (Lhatoo & Alexopoulos, 2007). Low-frequency (0.5 Hz) transcranial magnetic stimulation (TMS) at 90% of the resting motor threshold has been reported to be successful for about 2 months in a patient with epilepsia partialis continua, but with a weaning effect afterward, implying the need for a repetitive use (Misawa et al., 2005). More recently, TMS was applied in a combination of a short ''priming'' high frequency (up to 100 Hz) and longer runs of low-frequency stimulations (1 Hz) at 90-100% of the motor threshold in seven other patients with simple-partial status, with mixed results (Rotenberg et al., 2009). Paradoxically at first glance, electroconvulsive treatment may be found in cases of extremely resistant RSE. A recent case report illustrates its use in an adult patient with convulsive status, with three sessions (three convulsions each) carried out over 3 days, resulting in a moderate recovery; the mechanism is believed to be related to modification of the synaptic release of neurotransmitters (Cline & Roos, 2007). Therapeutic hypothermia, which is increasingly used in postanoxic patients (Oddo et al., 2008), has been the object of a recent case series in RSE (Corry et al., 2008). Reduction of energy demand, excitatory neurotransmission, and neuroprotective effects may account for the putative mechanism of action. Four adult patients in RSE were cooled to 31_-34_C with an endovascular system for up to 90 h, and then passively rewarmed over 2-50 h. Seizures were controlled in two patients, one of whom died; also one of the other two patients in whom seizures continued subsequently deceased. Possible side effects are related to acid-base and electrolyte disturbances, and coagulation dysfunction including thrombosis, infectious risks, cardiac arrhythmia, and paralytic ileus (Corry et al., 2008; Cereda et al., 2009). Finally, anecdotic evidence suggests that cerebrospinal fluid (CSF)-air exchange may induce some transitory benefit in RSE (Kohrmann et al., 2006); although this approach was already in use in the middle of the twentieth century, the mechanism is unknown. Acknowledgment A wide spectrum of pharmacologic (sedating and nonsedating) and nonpharmacologic (surgical, or involving electrical stimulation) regimens might be applied to attempt RSE control. Their use should be considered only after refractoriness to AED or anesthetics displaying a higher level of evidence. Although it seems unlikely that these uncommon and scarcely studied strategies will influence the RSE outcome in a decisive way, some may be interesting in particular settings. However, because the main prognostic determinant in status epilepticus appears to be related to the underlying etiology rather than to the treatment approach (Rossetti et al., 2005, 2008), the safety issue should always represent a paramount concern for the prescribing physician. Conclusion The author confirms that he has read the Journal's position on issues involved in ethical publication and affirms that this paper is consistent with those guidelines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acid-sensing ion channels (ASICs) are non-voltage-gated sodium channels activated by an extracellular acidification. They are widely expressed in neurons of the central and peripheral nervous system. ASICs have a role in learning, the expression of fear, in neuronal death after cerebral ischemia, and in pain sensation. Tissue damage leads to the release of inflammatory mediators. There is a subpopulation of sensory neurons which are able to release the neuropeptides calcitonin gene-related peptide (CGRP) and substance P (SP). Neurogenic inflammation refers to the process whereby peripheral release of the neuropeptides CGRP and SP induces vasodilation and extravasation of plasma proteins, respectively. Our laboratory has previously shown that calcium-permeable homomeric ASIC1a channels are present in a majority of CGRP- or SP-expressing small diameter sensory neurons. In the first part of my thesis, we tested the hypothesis that a local acidification can produce an ASIC-mediated calcium-dependant neuropeptide secretion. We have first verified the co-expression of ASICs and CGRP/SP using immunochemistry and in-situ hybridization on dissociated rat dorsal root ganglion (DRG) neurons. We found that most CGRP/SP-positive neurons also expressed ASIC1a and ASIC3 subunits. Calcium imaging experiments with Fura-2 dye showed that an extracellular acidification can induce an increase of intracellular Ca2+ concentration, which is essential for secretion. This increase of intracellular Ca2+ concentration is, at least in some cells, ASIC-dependent, as it can be prevented by amiloride, an ASIC antagonist, and by Psalmotoxin (PcTx1), a specific ASIC1a antagonist. We identified a sub-population of neurons whose acid-induced Ca2+ entry was completely abolished by amiloride, an amiloride-resistant population which does not express ASICs, but rather another acid-sensing channel, possibly transient receptor potential vanilloïde 1 (TRPV1), and a population expressing both H+-gated channel types. Voltage-gated calcium channels (Cavs) may also mediate Ca2+ entry. Co-application of the Cavs inhibitors (ω-conotoxin MVIIC, Mibefradil and Nifedipine) reduced the Ca2+ increase in neurons expressing ASICs during an acidification to pH 6. This indicates that ASICs can depolarise the neuron and activate Cavs. Homomeric ASIC1a are Ca2+-permeable and allow a direct entry of Ca2+ into the cell; other ASICs mediate an indirect entry of Ca2+ by inducing a membrane depolarisation that activates Cavs. We showed with a secretion assay that CGRP secretion can be induced by extracellular acidification in cultured rat DRG neurons. Amiloride and PcTx1 were not able to inhibit the secretion at acidic pH, but BCTC, a TRPV1 inhibitor was able to decrease the secretion induced by an extracellular acidification in our in vitro secretion assay. In conclusion, these results show that in DRG neurons a mild extracellular acidification can induce a calcium-dependent neuropeptide secretion. Even if our data show that ASICs can mediate an increase of intracellular Ca2+ concentration, this appears not to be sufficient to trigger neuropeptide secretion. TRPV1, a calcium channel whose activation induces a sustained current - in contrary of ASICs - played in our experimental conditions a predominant role in neurosecretion. In the second part of my thesis, we focused on the role of ASICs in neuropathic pain. We used the spared nerve injury (SNI) model which consists in a nerve injury that induces symptoms of neuropathic pain such as mechanical allodynia. We have previously shown that the SNI model modifies ASIC currents in dissociated rat DRG neurons. We hypothesized that ASICs could play a role in the development of mechanical allodynia. The SNI model was performed on ASIC1a, -2, and -3 knock-out mice and wild type littermates. We measured mechanical allodynia on these mice with calibrated von Frey filaments. There were no differences between the wild-type and the ASIC1, or ASIC2 knockout mice. ASIC3 null mice were less sensitive than wild type mice at 21 day after SNI, indicating a role for ASIC3. Finally, to investigate other possible roles of ASICs in the perception of the environment, we measured the baseline heat responses. We used two different models; the tail flick model and the hot plate model. ASIC1a null mice showed increased thermal allodynia behaviour in the hot plate test at three different temperatures (49, 52, 55°C) compared to their wild type littermates. On the contrary, ASIC2 null mice showed reduced thermal allodynia behaviour in the hot plate test compared to their wild type littermates at the three same temperatures. We conclude that ASIC1a and ASIC2 in mice can play a role in temperature sensing. It is currently not understood how ASICs are involved in temperature sensing and what the reason for the opposed effects in the two knockout models is.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Normalization of the increased vascular nitric oxide (NO) generation with low doses of NG-nitro-L-arginine methyl ester (L-NAME) corrects the hemodynamic abnormalities of cirrhotic rats with ascites. We have undertaken this study to investigate the effect of the normalization of vascular NO production, as estimated by aortic cyclic guanosine monophosphate (cGMP) concentration and endothelial nitric oxide synthase (eNOS) protein expression in the aorta and mesenteric artery, on sodium and water excretion. Rats with carbon tetrachloride-induced cirrhosis and ascites were investigated using balance studies. The cirrhotic rats were separated into two groups, one receiving 0.5 mg/kg per day of L-NAME (CIR-NAME) during 7 d, whereas the other group (CIR) was administrated the same volume of vehicle. Two other groups of rats were used as controls, one group treated with L-NAME and another group receiving the same volume of vehicle. Sodium and water excretion was measured on days 0 and 7. On day 8, blood samples were collected for electrolyte and hormone measurements, and aorta and mesenteric arteries were harvested for cGMP determination and nitric oxide synthase (NOS) immunoblotting. Aortic cGMP and eNOS protein expression in the aorta and mesenteric artery were increased in CIR as compared with CIR-NAME. Both cirrhotic groups had a similar decrease in sodium excretion on day 0 (0.7 versus 0.6 mmol per day, NS) and a positive sodium balance (+0.9 versus +1.2 mmol per day, NS). On day 7, CIR-NAME rats had an increase in sodium excretion as compared with the CIR rats (sodium excretion: 2.4 versus 0.7 mmol per day, P < 0.001) and a negative sodium balance (-0.5 versus +0.8 mmol per day, P < 0.001). The excretion of a water load was also increased after L-NAME administration (from 28+/-5% to 65+/-7, P < 0.05). Plasma renin activity, aldosterone and arginine vasopressin were also significantly decreased in the CIR-NAME, as compared with the CIR rats. The results thus indicate that normalization of aortic cGMP and eNOS protein expression in vascular tissue is associated with increased sodium and water excretion in cirrhotic rats with ascites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

STUDY OBJECTIVES: Sodium oxybate (SO) is a GABA(B) agonist used to treat the sleep disorder narcolepsy. SO was shown to increase slow wave sleep (SWS) and EEG delta power (0.75-4.5 Hz), both indexes of NREM sleep (NREMS) intensity and depth, suggesting that SO enhances recuperative function of NREM. We investigated whether SO induces physiological deep sleep. DESIGN: SO was administered before an afternoon nap or before the subsequent experimental night in 13 healthy volunteers. The effects of SO were compared to baclofen (BAC), another GABA(B) receptor agonist, to assess the role of GABA(B) receptors in the SO response. MEASUREMENTS AND RESULTS: As expected, a nap significantly decreased sleep need and intensity the subsequent night. Both drugs reversed this nap effect on the subsequent night by decreasing sleep latency and increasing total sleep time, SWS during the first NREMS episode, and EEG delta and theta (0.75-7.25 Hz) power during NREMS. The SO-induced increase in EEG delta and theta power was, however, not specific to NREMS and was also observed during REM sleep (REMS) and wakefulness. Moreover, the high levels of delta power during a nap following SO administration did not affect delta power the following night. SO and BAC taken before the nap did not improve subsequent psychomotor performance and subjective alertness, or memory consolidation. Finally, SO and BAC strongly promoted the appearance of sleep onset REM periods. CONCLUSIONS: The SO-induced EEG slow waves seem not to be functionally similar to physiological slow waves. Our findings also suggest a role for GABA(B) receptors in REMS generation. CITATION: Vienne J; Lecciso G; Constantinescu I; Schwartz S; Franken P; Heinzer R; Tafti M. Differential effects of sodium oxybate and baclofen on EEG, sleep, neurobehavioral performance, and memory. SLEEP 2012;35(8):1071-1084.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The heat shock response (HSR) is a highly conserved molecular response to various types of stresses, including heat shock, during which heat-shock proteins (Hsps) are produced to prevent and repair damages in labile proteins and membranes. In cells, protein unfolding in the cytoplasm is thought to directly enable the activation of the heat shock factor 1 (HSF-1), however, recent work supports the activation of the HSR via an increase in the fluidity of specific membrane domains, leading to activation of heat-shock genes. Our findings support the existence of a plasma membrane-dependent mechanism of HSF-1 activation in animal cells, which is initiated by a membrane-associated transient receptor potential vanilloid receptor (TRPV). We found in various non-cancerous and cancerous mammalian epithelial cells that the TRPV1 agonists, capsaicin and resiniferatoxin (RTX), upregulated the accumulation of Hsp70, Hsp90 and Hsp27 and Hsp70 and Hsp90 respectively, while the TRPV1 antagonists, capsazepine and AMG-9810, attenuated the accumulation of Hsp70, Hsp90 and Hsp27 and Hsp70, Hsp90, respectively. Capsaicin was also shown to activate HSF-1. These findings suggest that heat-sensing and signaling in mammalian cells is dependent on TRPV channels in the plasma membrane. Thus, TRPV channels may be important drug targets to inhibit or restore the cellular stress response in diseases with defective cellular proteins, such as cancer, inflammation and aging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in intracellular Na(+) concentration underlie essential neurobiological processes, but few reliable tools exist for their measurement. Here we characterize a new synthetic Na(+)-sensitive fluorescent dye, Asante Natrium Green (ANG), with unique properties. This indicator was excitable in the visible spectrum and by two-photon illumination, suffered little photobleaching and located to the cytosol were it remained for long durations without noticeable unwanted effects on basic cell properties. When used in brain tissue, ANG yielded a bright fluorescent signal during physiological Na(+) responses both in neurons and astrocytes. Synchronous electrophysiological and fluorometric recordings showed that ANG produced accurate Na(+) measurement in situ. This new Na(+) indicator opens innovative ways of probing neuronal circuits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in the CACNA1A gene, encoding the α1 subunit of the voltage-gated calcium channel CaV2.1 (P/Q-type), have been associated with three neurological phenotypes: familial and sporadic hemiplegic migraine type 1 (FHM1, SHM1), episodic ataxia type 2 (EA2), and spinocerebellar ataxia type 6 (SCA6). We report a child with congenital ataxia, abnormal eye movements and developmental delay who presented severe attacks of hemiplegic migraine triggered by minor head traumas and associated with hemispheric swelling and seizures. Progressive cerebellar atrophy was also observed. Remission of the attacks was obtained with acetazolamide. A de novo 3bp deletion was found in heterozygosity causing loss of a phenylalanine residue at position 1502, in one of the critical transmembrane domains of the protein contributing to the inner part of the pore. We characterized the electrophysiology of this mutant in a Xenopus oocyte in vitro system and showed that it causes gain of function of the channel. The mutant CaV2.1 activates at lower voltage threshold than the wild type. These findings provide further evidence of this molecular mechanism as causative of FHM1 and expand the phenotypic spectrum of CACNA1A mutations with a child exhibiting severe SHM1 and non-episodic ataxia of congenital onset.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Natrium- ja kaliumlannoituksen vaikutus timotein ravintoarvoon