795 resultados para Slot-based task-splitting algorithms
Resumo:
This study assessed the usefulness of a cognitive behavior modification (CBM) intervention package with mentally retarded students in overcoming learned helplessness and improving learning strategies. It also examined the feasibility of instructing teachers in the use of such a training program for a classroom setting. A modified single subject design across individuals was employed using two groups of three subjects. Three students from each of two segregated schools for the mentally retarded were selected using a teacher questionnaire and pupil checklist of the most learned helpless students enrolled there. Three additional learned helplessness assessments were conducted on each subject before and after the intervention in order to evaluate the usefulness of the program in alleviating learned helplessness. A classroom environment was created with the three students from each school engaged in three twenty minute work sessions a week with the experimenter and a tutor experimenter (TE) as instructors. Baseline measurements were established on seven targeted behaviors for each subject: task-relevant speech, task-irrelevant speech, speech denoting a positive evaluation of performance, speech denoting a negative evaluation of performance, proportion of time on task, non-verbal positive evaluation of performance and non-verbal negative evaluation of performance. The intervention package combined a variety of CBM techniques such as Meichenbaum's (1977) Stop, Look and Listen approach, role rehearsal and feedback. During the intervention each subject met with his TE twice a week for an individual half-hour session and one joint twenty minute session with all three students, the experimentor and one TE. Five weeks after the end of this experiment one follow up probe was conducted. All baseline, post-intervention and probe sessions were videotaped. The seven targeted behaviors were coded and comparisons of baseline, post intervention, and probe testing were presented in graph form. Results showed a reduction in learned helplessness in all subjects. Improvement was noted in each of the seven targeted behaviors for each of the six subjects. This study indicated that mentally retarded children can be taught to reduce learned helplessness with the aid of a CBM intervention package. It also showed that CBM is a viable approach in helping mentally retarded students acquire more effective learning strategies. Because the TEs (Tutor experimenters) had no trouble learning and implementing this program, it was considered feasible for teachers to use similar methods in the classroom.
Resumo:
Traditional psychometric theory and practice classify people according to broad ability dimensions but do not examine how these mental processes occur. Hunt and Lansman (1975) proposed a 'distributed memory' model of cognitive processes with emphasis on how to describe individual differences based on the assumption that each individual possesses the same components. It is in the quality of these components ~hat individual differences arise. Carroll (1974) expands Hunt's model to include a production system (after Newell and Simon, 1973) and a response system. He developed a framework of factor analytic (FA) factors for : the purpose of describing how individual differences may arise from them. This scheme is to be used in the analysis of psychometric tes ts . Recent advances in the field of information processing are examined and include. 1) Hunt's development of differences between subjects designated as high or low verbal , 2) Miller's pursuit of the magic number seven, plus or minus two, 3) Ferguson's examination of transfer and abilities and, 4) Brown's discoveries concerning strategy teaching and retardates . In order to examine possible sources of individual differences arising from cognitive tasks, traditional psychometric tests were searched for a suitable perceptual task which could be varied slightly and administered to gauge learning effects produced by controlling independent variables. It also had to be suitable for analysis using Carroll's f ramework . The Coding Task (a symbol substitution test) found i n the Performance Scale of the WISe was chosen. Two experiments were devised to test the following hypotheses. 1) High verbals should be able to complete significantly more items on the Symbol Substitution Task than low verbals (Hunt, Lansman, 1975). 2) Having previous practice on a task, where strategies involved in the task may be identified, increases the amount of output on a similar task (Carroll, 1974). J) There should be a sUbstantial decrease in the amount of output as the load on STM is increased (Miller, 1956) . 4) Repeated measures should produce an increase in output over trials and where individual differences in previously acquired abilities are involved, these should differentiate individuals over trials (Ferguson, 1956). S) Teaching slow learners a rehearsal strategy would improve their learning such that their learning would resemble that of normals on the ,:same task. (Brown, 1974). In the first experiment 60 subjects were d.ivided·into high and low verbal, further divided randomly into a practice group and nonpractice group. Five subjects in each group were assigned randomly to work on a five, seven and nine digit code throughout the experiment. The practice group was given three trials of two minutes each on the practice code (designed to eliminate transfer effects due to symbol similarity) and then three trials of two minutes each on the actual SST task . The nonpractice group was given three trials of two minutes each on the same actual SST task . Results were analyzed using a four-way analysis of variance . In the second experiment 18 slow learners were divided randomly into two groups. one group receiving a planned strategy practioe, the other receiving random practice. Both groups worked on the actual code to be used later in the actual task. Within each group subjects were randomly assigned to work on a five, seven or nine digit code throughout. Both practice and actual tests consisted on three trials of two minutes each. Results were analyzed using a three-way analysis of variance . It was found in t he first experiment that 1) high or low verbal ability by itself did not produce significantly different results. However, when in interaction with the other independent variables, a difference in performance was noted . 2) The previous practice variable was significant over all segments of the experiment. Those who received previo.us practice were able to score significantly higher than those without it. J) Increasing the size of the load on STM severely restricts performance. 4) The effect of repeated trials proved to be beneficial. Generally, gains were made on each successive trial within each group. S) In the second experiment, slow learners who were allowed to practice randomly performed better on the actual task than subjeots who were taught the code by means of a planned strategy. Upon analysis using the Carroll scheme, individual differences were noted in the ability to develop strategies of storing, searching and retrieving items from STM, and in adopting necessary rehearsals for retention in STM. While these strategies may benef it some it was found that for others they may be harmful . Temporal aspects and perceptual speed were also found to be sources of variance within individuals . Generally it was found that the largest single factor i nfluencing learning on this task was the repeated measures . What e~ables gains to be made, varies with individuals . There are environmental factors, specific abilities, strategy development, previous learning, amount of load on STM , perceptual and temporal parameters which influence learning and these have serious implications for educational programs .
Resumo:
Age-related differences in information processing have often been explained through deficits in older adults' ability to ignore irrelevant stimuli and suppress inappropriate responses through inhibitory control processes. Functional imaging work on young adults by Nelson and colleagues (2003) has indicated that inferior frontal and anterior cingulate cortex playa key role in resolving interference effects during a delay-to-match memory task. Specifically, inferior frontal cortex appeared to be recruited under conditions of context interference while the anterior cingulate was associated with interference resolution at the stage of response selection. Related work has shown that specific neural activities related to interference resolution are not preserved in older adults, supporting the notion of age-related declines in inhibitory control (Jonides et aI., 2000, West et aI., 2004b). In this study the time course and nature of these inhibition-related processes were investigated in young and old adults using high-density ERPs collected during a modified Sternberg task. Participants were presented with four target letters followed by a probe that either did or did not match one of the target letters held in working memory. Inhibitory processes were evoked by manipulating the nature of cognitive conflict in a particular trial. Conflict in working memory was elicited through the presentation of a probe letter in immediately previous target sets. Response-based conflict was produced by presenting a negative probe that had just been viewed as a positive probe on the previous trial. Younger adults displayed a larger orienting response (P3a and P3b) to positive probes relative to a non-target baseline. Older adults produced the orienting P3a and 3 P3b waveforms but their responses did not differentiate between target and non-target stimuli. This age-related change in response to targetness is discussed in terms of "early selection/late correction" models of cognitive ageing. Younger adults also showed a sensitivity in their N450 response to different levels of interference. Source analysis of the N450 responses to the conflict trials of younger adults indicated an initial dipole in inferior frontal cortex and a subsequent dipole in anterior cingulate cortex, suggesting that inferior prefrontal regions may recruit the anterior cingulate to exert cognitive control functions. Individual older adults did show some evidence of an N450 response to conflict; however, this response was attenuated by a co-occurring positive deflection in the N450 time window. It is suggested that this positivity may reflect a form of compensatory activity in older adults to adapt to their decline in inhibitory control.
Resumo:
A feature-based fitness function is applied in a genetic programming system to synthesize stochastic gene regulatory network models whose behaviour is defined by a time course of protein expression levels. Typically, when targeting time series data, the fitness function is based on a sum-of-errors involving the values of the fluctuating signal. While this approach is successful in many instances, its performance can deteriorate in the presence of noise. This thesis explores a fitness measure determined from a set of statistical features characterizing the time series' sequence of values, rather than the actual values themselves. Through a series of experiments involving symbolic regression with added noise and gene regulatory network models based on the stochastic 'if-calculus, it is shown to successfully target oscillating and non-oscillating signals. This practical and versatile fitness function offers an alternate approach, worthy of consideration for use in algorithms that evaluate noisy or stochastic behaviour.
Resumo:
Hub location problem is an NP-hard problem that frequently arises in the design of transportation and distribution systems, postal delivery networks, and airline passenger flow. This work focuses on the Single Allocation Hub Location Problem (SAHLP). Genetic Algorithms (GAs) for the capacitated and uncapacitated variants of the SAHLP based on new chromosome representations and crossover operators are explored. The GAs is tested on two well-known sets of real-world problems with up to 200 nodes. The obtained results are very promising. For most of the test problems the GA obtains improved or best-known solutions and the computational time remains low. The proposed GAs can easily be extended to other variants of location problems arising in network design planning in transportation systems.
Resumo:
A complex network is an abstract representation of an intricate system of interrelated elements where the patterns of connection hold significant meaning. One particular complex network is a social network whereby the vertices represent people and edges denote their daily interactions. Understanding social network dynamics can be vital to the mitigation of disease spread as these networks model the interactions, and thus avenues of spread, between individuals. To better understand complex networks, algorithms which generate graphs exhibiting observed properties of real-world networks, known as graph models, are often constructed. While various efforts to aid with the construction of graph models have been proposed using statistical and probabilistic methods, genetic programming (GP) has only recently been considered. However, determining that a graph model of a complex network accurately describes the target network(s) is not a trivial task as the graph models are often stochastic in nature and the notion of similarity is dependent upon the expected behavior of the network. This thesis examines a number of well-known network properties to determine which measures best allowed networks generated by different graph models, and thus the models themselves, to be distinguished. A proposed meta-analysis procedure was used to demonstrate how these network measures interact when used together as classifiers to determine network, and thus model, (dis)similarity. The analytical results form the basis of the fitness evaluation for a GP system used to automatically construct graph models for complex networks. The GP-based automatic inference system was used to reproduce existing, well-known graph models as well as a real-world network. Results indicated that the automatically inferred models exemplified functional similarity when compared to their respective target networks. This approach also showed promise when used to infer a model for a mammalian brain network.
Resumo:
Experimental Extended X-ray Absorption Fine Structure (EXAFS) spectra carry information about the chemical structure of metal protein complexes. However, pre- dicting the structure of such complexes from EXAFS spectra is not a simple task. Currently methods such as Monte Carlo optimization or simulated annealing are used in structure refinement of EXAFS. These methods have proven somewhat successful in structure refinement but have not been successful in finding the global minima. Multiple population based algorithms, including a genetic algorithm, a restarting ge- netic algorithm, differential evolution, and particle swarm optimization, are studied for their effectiveness in structure refinement of EXAFS. The oxygen-evolving com- plex in S1 is used as a benchmark for comparing the algorithms. These algorithms were successful in finding new atomic structures that produced improved calculated EXAFS spectra over atomic structures previously found.
Characterizing Dynamic Optimization Benchmarks for the Comparison of Multi-Modal Tracking Algorithms
Resumo:
Population-based metaheuristics, such as particle swarm optimization (PSO), have been employed to solve many real-world optimization problems. Although it is of- ten sufficient to find a single solution to these problems, there does exist those cases where identifying multiple, diverse solutions can be beneficial or even required. Some of these problems are further complicated by a change in their objective function over time. This type of optimization is referred to as dynamic, multi-modal optimization. Algorithms which exploit multiple optima in a search space are identified as niching algorithms. Although numerous dynamic, niching algorithms have been developed, their performance is often measured solely on their ability to find a single, global optimum. Furthermore, the comparisons often use synthetic benchmarks whose landscape characteristics are generally limited and unknown. This thesis provides a landscape analysis of the dynamic benchmark functions commonly developed for multi-modal optimization. The benchmark analysis results reveal that the mechanisms responsible for dynamism in the current dynamic bench- marks do not significantly affect landscape features, thus suggesting a lack of representation for problems whose landscape features vary over time. This analysis is used in a comparison of current niching algorithms to identify the effects that specific landscape features have on niching performance. Two performance metrics are proposed to measure both the scalability and accuracy of the niching algorithms. The algorithm comparison results demonstrate the algorithms best suited for a variety of dynamic environments. This comparison also examines each of the algorithms in terms of their niching behaviours and analyzing the range and trade-off between scalability and accuracy when tuning the algorithms respective parameters. These results contribute to the understanding of current niching techniques as well as the problem features that ultimately dictate their success.
Resumo:
Feature selection plays an important role in knowledge discovery and data mining nowadays. In traditional rough set theory, feature selection using reduct - the minimal discerning set of attributes - is an important area. Nevertheless, the original definition of a reduct is restrictive, so in one of the previous research it was proposed to take into account not only the horizontal reduction of information by feature selection, but also a vertical reduction considering suitable subsets of the original set of objects. Following the work mentioned above, a new approach to generate bireducts using a multi--objective genetic algorithm was proposed. Although the genetic algorithms were used to calculate reduct in some previous works, we did not find any work where genetic algorithms were adopted to calculate bireducts. Compared to the works done before in this area, the proposed method has less randomness in generating bireducts. The genetic algorithm system estimated a quality of each bireduct by values of two objective functions as evolution progresses, so consequently a set of bireducts with optimized values of these objectives was obtained. Different fitness evaluation methods and genetic operators, such as crossover and mutation, were applied and the prediction accuracies were compared. Five datasets were used to test the proposed method and two datasets were used to perform a comparison study. Statistical analysis using the one-way ANOVA test was performed to determine the significant difference between the results. The experiment showed that the proposed method was able to reduce the number of bireducts necessary in order to receive a good prediction accuracy. Also, the influence of different genetic operators and fitness evaluation strategies on the prediction accuracy was analyzed. It was shown that the prediction accuracies of the proposed method are comparable with the best results in machine learning literature, and some of them outperformed it.
Resumo:
Les tâches de vision artificielle telles que la reconnaissance d’objets demeurent irrésolues à ce jour. Les algorithmes d’apprentissage tels que les Réseaux de Neurones Artificiels (RNA), représentent une approche prometteuse permettant d’apprendre des caractéristiques utiles pour ces tâches. Ce processus d’optimisation est néanmoins difficile. Les réseaux profonds à base de Machine de Boltzmann Restreintes (RBM) ont récemment été proposés afin de guider l’extraction de représentations intermédiaires, grâce à un algorithme d’apprentissage non-supervisé. Ce mémoire présente, par l’entremise de trois articles, des contributions à ce domaine de recherche. Le premier article traite de la RBM convolutionelle. L’usage de champs réceptifs locaux ainsi que le regroupement d’unités cachées en couches partageant les même paramètres, réduit considérablement le nombre de paramètres à apprendre et engendre des détecteurs de caractéristiques locaux et équivariant aux translations. Ceci mène à des modèles ayant une meilleure vraisemblance, comparativement aux RBMs entraînées sur des segments d’images. Le deuxième article est motivé par des découvertes récentes en neurosciences. Il analyse l’impact d’unités quadratiques sur des tâches de classification visuelles, ainsi que celui d’une nouvelle fonction d’activation. Nous observons que les RNAs à base d’unités quadratiques utilisant la fonction softsign, donnent de meilleures performances de généralisation. Le dernière article quand à lui, offre une vision critique des algorithmes populaires d’entraînement de RBMs. Nous montrons que l’algorithme de Divergence Contrastive (CD) et la CD Persistente ne sont pas robustes : tous deux nécessitent une surface d’énergie relativement plate afin que leur chaîne négative puisse mixer. La PCD à "poids rapides" contourne ce problème en perturbant légèrement le modèle, cependant, ceci génère des échantillons bruités. L’usage de chaînes tempérées dans la phase négative est une façon robuste d’adresser ces problèmes et mène à de meilleurs modèles génératifs.
Resumo:
Le problème de localisation-routage avec capacités (PLRC) apparaît comme un problème clé dans la conception de réseaux de distribution de marchandises. Il généralisele problème de localisation avec capacités (PLC) ainsi que le problème de tournées de véhicules à multiples dépôts (PTVMD), le premier en ajoutant des décisions liées au routage et le deuxième en ajoutant des décisions liées à la localisation des dépôts. Dans cette thèse on dévelope des outils pour résoudre le PLRC à l’aide de la programmation mathématique. Dans le chapitre 3, on introduit trois nouveaux modèles pour le PLRC basés sur des flots de véhicules et des flots de commodités, et on montre comment ceux-ci dominent, en termes de la qualité de la borne inférieure, la formulation originale à deux indices [19]. Des nouvelles inégalités valides ont été dévelopées et ajoutées aux modèles, de même que des inégalités connues. De nouveaux algorithmes de séparation ont aussi été dévelopés qui dans la plupart de cas généralisent ceux trouvés dans la litterature. Les résultats numériques montrent que ces modèles de flot sont en fait utiles pour résoudre des instances de petite à moyenne taille. Dans le chapitre 4, on présente une nouvelle méthode de génération de colonnes basée sur une formulation de partition d’ensemble. Le sous-problème consiste en un problème de plus court chemin avec capacités (PCCC). En particulier, on utilise une relaxation de ce problème dans laquelle il est possible de produire des routes avec des cycles de longueur trois ou plus. Ceci est complété par des nouvelles coupes qui permettent de réduire encore davantage le saut d’intégralité en même temps que de défavoriser l’apparition de cycles dans les routes. Ces résultats suggèrent que cette méthode fournit la meilleure méthode exacte pour le PLRC. Dans le chapitre 5, on introduit une nouvelle méthode heuristique pour le PLRC. Premièrement, on démarre une méthode randomisée de type GRASP pour trouver un premier ensemble de solutions de bonne qualité. Les solutions de cet ensemble sont alors combinées de façon à les améliorer. Finalement, on démarre une méthode de type détruir et réparer basée sur la résolution d’un nouveau modèle de localisation et réaffectation qui généralise le problème de réaffectaction [48].
Resumo:
Malgré des progrès constants en termes de capacité de calcul, mémoire et quantité de données disponibles, les algorithmes d'apprentissage machine doivent se montrer efficaces dans l'utilisation de ces ressources. La minimisation des coûts est évidemment un facteur important, mais une autre motivation est la recherche de mécanismes d'apprentissage capables de reproduire le comportement d'êtres intelligents. Cette thèse aborde le problème de l'efficacité à travers plusieurs articles traitant d'algorithmes d'apprentissage variés : ce problème est vu non seulement du point de vue de l'efficacité computationnelle (temps de calcul et mémoire utilisés), mais aussi de celui de l'efficacité statistique (nombre d'exemples requis pour accomplir une tâche donnée). Une première contribution apportée par cette thèse est la mise en lumière d'inefficacités statistiques dans des algorithmes existants. Nous montrons ainsi que les arbres de décision généralisent mal pour certains types de tâches (chapitre 3), de même que les algorithmes classiques d'apprentissage semi-supervisé à base de graphe (chapitre 5), chacun étant affecté par une forme particulière de la malédiction de la dimensionalité. Pour une certaine classe de réseaux de neurones, appelés réseaux sommes-produits, nous montrons qu'il peut être exponentiellement moins efficace de représenter certaines fonctions par des réseaux à une seule couche cachée, comparé à des réseaux profonds (chapitre 4). Nos analyses permettent de mieux comprendre certains problèmes intrinsèques liés à ces algorithmes, et d'orienter la recherche dans des directions qui pourraient permettre de les résoudre. Nous identifions également des inefficacités computationnelles dans les algorithmes d'apprentissage semi-supervisé à base de graphe (chapitre 5), et dans l'apprentissage de mélanges de Gaussiennes en présence de valeurs manquantes (chapitre 6). Dans les deux cas, nous proposons de nouveaux algorithmes capables de traiter des ensembles de données significativement plus grands. Les deux derniers chapitres traitent de l'efficacité computationnelle sous un angle différent. Dans le chapitre 7, nous analysons de manière théorique un algorithme existant pour l'apprentissage efficace dans les machines de Boltzmann restreintes (la divergence contrastive), afin de mieux comprendre les raisons qui expliquent le succès de cet algorithme. Finalement, dans le chapitre 8 nous présentons une application de l'apprentissage machine dans le domaine des jeux vidéo, pour laquelle le problème de l'efficacité computationnelle est relié à des considérations d'ingénierie logicielle et matérielle, souvent ignorées en recherche mais ô combien importantes en pratique.
Resumo:
Naïvement perçu, le processus d’évolution est une succession d’événements de duplication et de mutations graduelles dans le génome qui mènent à des changements dans les fonctions et les interactions du protéome. La famille des hydrolases de guanosine triphosphate (GTPases) similaire à Ras constitue un bon modèle de travail afin de comprendre ce phénomène fondamental, car cette famille de protéines contient un nombre limité d’éléments qui diffèrent en fonctionnalité et en interactions. Globalement, nous désirons comprendre comment les mutations singulières au niveau des GTPases affectent la morphologie des cellules ainsi que leur degré d’impact sur les populations asynchrones. Mon travail de maîtrise vise à classifier de manière significative différents phénotypes de la levure Saccaromyces cerevisiae via l’analyse de plusieurs critères morphologiques de souches exprimant des GTPases mutées et natives. Notre approche à base de microscopie et d’analyses bioinformatique des images DIC (microscopie d’interférence différentielle de contraste) permet de distinguer les phénotypes propres aux cellules natives et aux mutants. L’emploi de cette méthode a permis une détection automatisée et une caractérisation des phénotypes mutants associés à la sur-expression de GTPases constitutivement actives. Les mutants de GTPases constitutivement actifs Cdc42 Q61L, Rho5 Q91H, Ras1 Q68L et Rsr1 G12V ont été analysés avec succès. En effet, l’implémentation de différents algorithmes de partitionnement, permet d’analyser des données qui combinent les mesures morphologiques de population native et mutantes. Nos résultats démontrent que l’algorithme Fuzzy C-Means performe un partitionnement efficace des cellules natives ou mutantes, où les différents types de cellules sont classifiés en fonction de plusieurs facteurs de formes cellulaires obtenus à partir des images DIC. Cette analyse démontre que les mutations Cdc42 Q61L, Rho5 Q91H, Ras1 Q68L et Rsr1 G12V induisent respectivement des phénotypes amorphe, allongé, rond et large qui sont représentés par des vecteurs de facteurs de forme distincts. Ces distinctions sont observées avec différentes proportions (morphologie mutante / morphologie native) dans les populations de mutants. Le développement de nouvelles méthodes automatisées d’analyse morphologique des cellules natives et mutantes s’avère extrêmement utile pour l’étude de la famille des GTPases ainsi que des résidus spécifiques qui dictent leurs fonctions et réseau d’interaction. Nous pouvons maintenant envisager de produire des mutants de GTPases qui inversent leur fonction en ciblant des résidus divergents. La substitution fonctionnelle est ensuite détectée au niveau morphologique grâce à notre nouvelle stratégie quantitative. Ce type d’analyse peut également être transposé à d’autres familles de protéines et contribuer de manière significative au domaine de la biologie évolutive.
Resumo:
Les systèmes statistiques de traduction automatique ont pour tâche la traduction d’une langue source vers une langue cible. Dans la plupart des systèmes de traduction de référence, l'unité de base considérée dans l'analyse textuelle est la forme telle qu’observée dans un texte. Une telle conception permet d’obtenir une bonne performance quand il s'agit de traduire entre deux langues morphologiquement pauvres. Toutefois, ceci n'est plus vrai lorsqu’il s’agit de traduire vers une langue morphologiquement riche (ou complexe). Le but de notre travail est de développer un système statistique de traduction automatique comme solution pour relever les défis soulevés par la complexité morphologique. Dans ce mémoire, nous examinons, dans un premier temps, un certain nombre de méthodes considérées comme des extensions aux systèmes de traduction traditionnels et nous évaluons leurs performances. Cette évaluation est faite par rapport aux systèmes à l’état de l’art (système de référence) et ceci dans des tâches de traduction anglais-inuktitut et anglais-finnois. Nous développons ensuite un nouvel algorithme de segmentation qui prend en compte les informations provenant de la paire de langues objet de la traduction. Cet algorithme de segmentation est ensuite intégré dans le modèle de traduction à base d’unités lexicales « Phrase-Based Models » pour former notre système de traduction à base de séquences de segments. Enfin, nous combinons le système obtenu avec des algorithmes de post-traitement pour obtenir un système de traduction complet. Les résultats des expériences réalisées dans ce mémoire montrent que le système de traduction à base de séquences de segments proposé permet d’obtenir des améliorations significatives au niveau de la qualité de la traduction en terme de le métrique d’évaluation BLEU (Papineni et al., 2002) et qui sert à évaluer. Plus particulièrement, notre approche de segmentation réussie à améliorer légèrement la qualité de la traduction par rapport au système de référence et une amélioration significative de la qualité de la traduction est observée par rapport aux techniques de prétraitement de base (baseline).
Resumo:
La tâche de kinématogramme de points aléatoires est utilisée avec le paradigme de choix forcé entre deux alternatives pour étudier les prises de décisions perceptuelles. Les modèles décisionnels supposent que les indices de mouvement pour les deux alternatives sont encodés dans le cerveau. Ainsi, la différence entre ces deux signaux est accumulée jusqu’à un seuil décisionnel. Cependant, aucune étude à ce jour n’a testé cette hypothèse avec des stimuli contenant des mouvements opposés. Ce mémoire présente les résultats de deux expériences utilisant deux nouveaux stimuli avec des indices de mouvement concurrentiels. Parmi une variété de combinaisons d’indices concurrentiels, la performance des sujets dépend de la différence nette entre les deux signaux opposés. De plus, les sujets obtiennent une performance similaire avec les deux types de stimuli. Ces résultats supportent un modèle décisionnel basé sur l’accumulation des indices de mouvement net et suggèrent que le processus décisionnel peut intégrer les signaux de mouvement à partir d’une grande gamme de directions pour obtenir un percept global de mouvement.