984 resultados para Single-exciton spectroscopy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reaction of the Schiff base (3,5-di-tert-butyl-2-hydroxybenzylidene)-2-hydroxybenzohydrazide (H3L) with copper(II) nitrate, acetate or metaborate has led to the isomeric complexes [Cu-3(L)(2)(MeOH)(4)] (1), [Cu-3(L)(2)(MeOH)(2)]2MeOH (2) and [Cu-3(L)(2)(MeOH)(4)] (3), respectively, in which the ligand L exhibits dianionic (HL2-, in 1) or trianionic (L3-, in 2 and 3) pentadentate 1O,O,N:2N,O chelation modes. Complexes 1-3 were characterized by elemental analysis, IR spectroscopy, single-crystal X-ray crystallography, electrochemical methods and variable-temperature magnetic susceptibility measurements, which indicated that the intratrimer antiferromagnetic coupling is strong in the three complexes and that there exists very weak ferromagnetic intermolecular interactions in 1 but weak antiferromagnetic intermolecular interactions in both 2 and 3. Electrochemical experiments showed that in complexes 1-3 the Cu-II ions can be reduced, in distinct steps, to Cu-I and Cu-0. All the complexes act as efficient catalyst precursors under mild conditions for the peroxidative oxidation of cyclohexane to cyclohexyl hydroperoxide, cyclohexanol and cyclohexanone, leading to overall yields (based on the alkane) of up to 31% (TON = 1.55x10(3)) after 6 h in the presence of pyrazinecarboxylic acid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The single-lap joint is the most commonly used, although it endures significant bending due to the non-collinear load path, which negatively affects its load bearing capabilities. The use of material or geometric changes is widely documented in the literature to reduce this handicap, acting by reduction of peel and shear peak stresses or alterations of the failure mechanism emerging from local modifications. In this work, the effect of using different thickness adherends on the tensile strength of single-lap joints, bonded with a ductile and brittle adhesive, was numerically and experimentally evaluated. The joints were tested under tension for different combinations of adherend thickness. The effect of the adherends thickness mismatch on the stress distributions was also investigated by Finite Elements (FE), which explained the experimental results and the strength prediction of the joints. The numerical study was made by FE and Cohesive Zone Modelling (CZM), which allowed characterizing the entire fracture process. For this purpose, a FE analysis was performed in ABAQUS® considering geometric non-linearities. In the end, a detailed comparative evaluation of unbalanced joints, commonly used in engineering applications, is presented to give an understanding on how modifications in the bonded structures thickness can influence the joint performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bonded joints are gaining importance in many fields of manufacturing owing to a significant number of advantages to the traditional methods. The single lap joint (SLJ) is the most commonly used method. The use of material or geometric changes in SLJ reduces peel and shear peak stresses at the damage initiation sites. In this work, the effect of adherend recessing at the overlap edges on the tensile strength of SLJ, bonded with a brittle adhesive, was experimentally and numerically studied. The recess dimensions (length and depth) were optimized for different values of overlap length (LO), thus allowing the maximization of the joint’s strength by the reduction of peak stresses at the overlap edges. The effect of recessing was also investigated by a finite element (FE) analysis and cohesive zone modelling (CZM), which allowed characterizing the entire fracture process and provided joint strength predictions. For this purpose, a static FE analysis was performed in ABAQUS1 considering geometric nonlinearities. In the end, the experimental and FE results revealed the accuracy of the FE analysis in predicting the strength and also provided some design principles for the strength improvement of SLJ using a relatively simple and straightforward technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Beam-like structures are the most common components in real engineering, while single side damage is often encountered. In this study, a numerical analysis of single side damage in a free-free beam is analysed with three different finite element models; namely solid, shell and beam models for demonstrating their performance in simulating real structures. Similar to experiment, damage is introduced into one side of the beam, and natural frequencies are extracted from the simulations and compared with experimental and analytical results. Mode shapes are also analysed with modal assurance criterion. The results from simulations reveal a good performance of the three models in extracting natural frequencies, and solid model performs better than shell while shell model performs better than beam model under intact state. For damaged states, the natural frequencies captured from solid model show more sensitivity to damage severity than shell model and shell model performs similar to the beam model in distinguishing damage. The main contribution of this paper is to perform a comparison between three finite element models and experimental data as well as analytical solutions. The finite element results show a relatively well performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of biopharmaceutical manufacturing processes presents critical constraints, with the major constraint being that living cells synthesize these molecules, presenting inherent behavior variability due to their high sensitivity to small fluctuations in the cultivation environment. To speed up the development process and to control this critical manufacturing step, it is relevant to develop high-throughput and in situ monitoring techniques, respectively. Here, high-throughput mid-infrared (MIR) spectral analysis of dehydrated cell pellets and in situ near-infrared (NIR) spectral analysis of the whole culture broth were compared to monitor plasmid production in recombinant Escherichia coil cultures. Good partial least squares (PLS) regression models were built, either based on MIR or NIR spectral data, yielding high coefficients of determination (R-2) and low predictive errors (root mean square error, or RMSE) to estimate host cell growth, plasmid production, carbon source consumption (glucose and glycerol), and by-product acetate production and consumption. The predictive errors for biomass, plasmid, glucose, glycerol, and acetate based on MIR data were 0.7 g/L, 9 mg/L, 0.3 g/L, 0.4 g/L, and 0.4 g/L, respectively, whereas for NIR data the predictive errors obtained were 0.4 g/L, 8 mg/L, 0.3 g/L, 0.2 g/L, and 0.4 g/L, respectively. The models obtained are robust as they are valid for cultivations conducted with different media compositions and with different cultivation strategies (batch and fed-batch). Besides being conducted in situ with a sterilized fiber optic probe, NIR spectroscopy allows building PLS models for estimating plasmid, glucose, and acetate that are as accurate as those obtained from the high-throughput MIR setup, and better models for estimating biomass and glycerol, yielding a decrease in 57 and 50% of the RMSE, respectively, compared to the MIR setup. However, MIR spectroscopy could be a valid alternative in the case of optimization protocols, due to possible space constraints or high costs associated with the use of multi-fiber optic probes for multi-bioreactors. In this case, MIR could be conducted in a high-throughput manner, analyzing hundreds of culture samples in a rapid and automatic mode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUNDWhile the pharmaceutical industry keeps an eye on plasmid DNA production for new generation gene therapies, real-time monitoring techniques for plasmid bioproduction are as yet unavailable. This work shows the possibility of in situ monitoring of plasmid production in Escherichia coli cultures using a near infrared (NIR) fiber optic probe. RESULTSPartial least squares (PLS) regression models based on the NIR spectra were developed for predicting bioprocess critical variables such as the concentrations of biomass, plasmid, carbon sources (glucose and glycerol) and acetate. In order to achieve robust models able to predict the performance of plasmid production processes, independently of the composition of the cultivation medium, cultivation strategy (batch versus fed-batch) and E. coli strain used, three strategies were adopted, using: (i) E. coliDH5 cultures conducted under different media compositions and culture strategies (batch and fed-batch); (ii) engineered E. coli strains, MG1655endArecApgi and MG1655endArecA, grown on the same medium and culture strategy; (iii) diverse E. coli strains, over batch and fed-batch cultivations and using different media compositions. PLS models showed high accuracy for predicting all variables in the three groups of cultures. CONCLUSIONNIR spectroscopy combined with PLS modeling provides a fast, inexpensive and contamination-free technique to accurately monitoring plasmid bioprocesses in real time, independently of the medium composition, cultivation strategy and the E. coli strain used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human mesenchymal stem/stromal cells (MSCs) have received considerable attention in the field of cell-based therapies due to their high differentiation potential and ability to modulate immune responses. However, since these cells can only be isolated in very low quantities, successful realization of these therapies requires MSCs ex-vivo expansion to achieve relevant cell doses. The metabolic activity is one of the parameters often monitored during MSCs cultivation by using expensive multi-analytical methods, some of them time-consuming. The present work evaluates the use of mid-infrared (MIR) spectroscopy, through rapid and economic high-throughput analyses associated to multivariate data analysis, to monitor three different MSCs cultivation runs conducted in spinner flasks, under xeno-free culture conditions, which differ in the type of microcarriers used and the culture feeding strategy applied. After evaluating diverse spectral preprocessing techniques, the optimized partial least square (PLS) regression models based on the MIR spectra to estimate the glucose, lactate and ammonia concentrations yielded high coefficients of determination (R2 ≥ 0.98, ≥0.98, and ≥0.94, respectively) and low prediction errors (RMSECV ≤ 4.7%, ≤4.4% and ≤5.7%, respectively). Besides PLS models valid for specific expansion protocols, a robust model simultaneously valid for the three processes was also built for predicting glucose, lactate and ammonia, yielding a R2 of 0.95, 0.97 and 0.86, and a RMSECV of 0.33, 0.57, and 0.09 mM, respectively. Therefore, MIR spectroscopy combined with multivariate data analysis represents a promising tool for both optimization and control of MSCs expansion processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infrared spectroscopy, either in the near and mid (NIR/MIR) region of the spectra, has gained great acceptance in the industry for bioprocess monitoring according to Process Analytical Technology, due to its rapid, economic, high sensitivity mode of application and versatility. Due to the relevance of cyprosin (mostly for dairy industry), and as NIR and MIR spectroscopy presents specific characteristics that ultimately may complement each other, in the present work these techniques were compared to monitor and characterize by in situ and by at-line high-throughput analysis, respectively, recombinant cyprosin production by Saccharomyces cerevisiae. Partial least-square regression models, relating NIR and MIR-spectral features with biomass, cyprosin activity, specific activity, glucose, galactose, ethanol and acetate concentration were developed, all presenting, in general, high regression coefficients and low prediction errors. In the case of biomass and glucose slight better models were achieved by in situ NIR spectroscopic analysis, while for cyprosin activity and specific activity slight better models were achieved by at-line MIR spectroscopic analysis. Therefore both techniques enabled to monitor the highly dynamic cyprosin production bioprocess, promoting by this way more efficient platforms for the bioprocess optimization and control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A one-pot template reaction of sodium 2-(2-(dicyanomethylene) hydrazinyl) benzenesulfonate (NaHL1) with water and manganese(II) acetate tetrahydrate led to the mononuclear complex [Mn(H2O)(6)](HL1a)(2)center dot 4H(2)O (1), where (HL1a) -= 2-(SO3-)C6H4(NH)=N=C(C N) (CONH2) is the carboxamide species derived from nucleophilic attack of water on a cyano group of (HL1) . The copper tetramer [Cu-4(H2O)(10)(-) (1 kappa N: kappa O-2: kappa O, 2 kappa N: k(O)-L-2)(2)]center dot 2H(2)O (2) was obtained from reaction of Cu(NO3)(2)center dot 2.5H(2)O with sodium 5-(2( 4,4-dimethyl-2,6-dioxocyclohexylidene) hydrazinyl)-4-hydroxybenzene-1,3-disulfonate (Na2H2L2). Both complexes were characterized by elemental analysis, IR spectroscopy, ESI-MS and single crystal X-ray diffraction. They exhibit a high catalytic activity for the solvent-and additive-free microwave (MW) assisted oxidation of primary and secondary alcohols with tert-butylhydroperoxide, leading to yields of the oxidized products up to 85.5% and TOFs up to 1.90 x 103 h(-1) after 1 h under low power (5-10 W) MW irradiation. Moreover, the heterogeneous catalysts are easily recovered and reused, at least for three consecutive cycles, maintaining 89% of the initial activity and a high selectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do grau de Doutor em Biotecnologia pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia. A presente dissertação foi preparada no âmbito do protocolo de acordo bilateral de educação avançada (ERASMUS) entre a Universidade de Vigo e a Universidade Nova de Lisboa

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Biológica – especialidade Engenharia Genética, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A single and practical method to slain Malassezia furfur and Corynebacterium minutissimum in lesions' scales is described. The scales are collected by pressing small pieces of scotch tape (about 4 cm lenght and 2 cm width) onto the lesions and following withdrawl the furfuraceous scales will remain on the glue side. These pieces are then immersed for some minutes in lactophenol-cotton blue stain. Following absorption of the stain the scales are washed in current water to remove the excess of blue stain, dried with filter paper, dehydrated via passage in two bottles containing absolute alcohol and then placed in xylene in a centrifugation tube. The xylene dissolves the scotch tape glue and the scales fall free in the tube. After centrifugation and decantation the scales concentrated on the bottom of the tube are collected with a platinum-loop, placed in Canada balsam on a microscopy slide and closed with a cover slip. The preparations are then ready to be submitted to microscopic examination. Other stains may also be used instead of lactophenol-cotton blue. This method is simple, easily performed, and offers good conditions to study these fungi as well as being useful for the diagnosis of the diseases that they cause.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selenium modified ruthenium electrocatalysts supported on carbon black were synthesized using NaBH4 reduction of the metal precursor. Prepared Ru/C electrocatalysts showed high dispersion and very small averaged particle size. These Ru/C electrocatalysts were subsequently modified with Se following two procedures: (a) preformed Ru/carbon catalyst was mixed with SeO2 in xylene and reduced in H2 and (b) Ru metal precursor was mixed with SeO2 followed by reduction with NaBH4. The XRD patterns indicate that a pyrite-type structure was obtained at higher annealing temperatures, regardless of the Ru:Se molar ratio used in the preparation step. A pyrite-type structure also emerged in samples that were not calcined; however, in this case, the pyrite-type structure was only prominent for samples with higher Ru:Se ratios. The characterization of the RuSe/C electrocatalysts suggested that the Se in noncalcined samples was present mainly as an amorphous skin. Preliminary study of activity toward oxygen reduction reaction (ORR) using electrocatalysts with a Ru:Se ratio of 1:0.7 indicated that annealing after modification with Se had a detrimental effect on their activity. This result could be related to the increased particle size of crystalline RuSe2 in heat-treated samples. Higher activity of not annealed RuSe/C catalysts could also be a result of the structure containing amorphous Se skin on the Ru crystal. The electrode obtained using not calcined RuSe showed a very promising performance with a slightly lower activity and higher overpotential in comparison with a commercial Pt/C electrode. Single wall carbon nanohorns (SWNH) were considered for application as ORR electrocatalysts' supports. The characterization of SWNH was carried out regarding their tolerance toward strong catalyzed corrosion conditions. Tests indicated that SWNH have a three times higher electrochemical surface area (ESA) loss than carbon black or Pt commercial electrodes.