1000 resultados para Silver-plated ware


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract
Silver nanoparticles (AgNPs) have attracted much attention as antimicrobial agents and have demonstrated efficient inhibitory activity against various viruses, including human immunodeficiency virus, hepatitis B virus, and Tacaribe virus. In this study, we investigated if AgNPs could have antiviral and preventive effects in A/Human/Hubei/3/2005 (H3N2) influenza virus infection. Madin-Darby canine kidney cells infected with AgNP-treated H3N2 influenza virus showed better viability (P,0.05 versus influenza virus control) and no obvious cytopathic effects compared with an influenza virus control group and a group treated with the solvent used for preparation of the AgNPs. Hemagglutination assay indicated that AgNPs could significantly inhibit growth of the influenza virus in Madin-Darby canine kidney cells (P,0.01 versus the influenza virus control). AgNPs significantly reduced cell apoptosis induced by H3N2 influenza virus at three different treatment pathways (P,0.05 versus influenza virus control). H3N2 influenza viruses treated with AgNPs were analyzed by transmission electron microscopy and found to interact with each other, resulting in destruction of morphologic viral structures in a time-dependent manner in a time range of 30 minutes to 2 hours. In addition, intranasal AgNP administration in mice significantly enhanced survival after infection with the H3N2 influenza virus. Mice treated with AgNPs showed lower lung viral titer levels and minor pathologic lesions in lung tissue, and had a marked survival benefit during secondary intranasal passage in vivo. These results provide evidence that AgNPs have beneficial effects in preventing H3N2 influenza virus infection both in vitro and in vivo, and demonstrate that AgNPs can be used as potential therapeutics for inhibiting outbreaks of influenza.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photoconversion of photomorphic silver nanoparticles from discs to prisms via citrate mediated growth on the twin plane faces of the nanoparticles is demonstrated. This systematic shape evolution from discs to hexagons and then prisms of increasing aspect ratios is a result of the growth process being confined to specific faces of the growing nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the structure of the electrical double layer, determined from molecular dynamics simulations, for a range of saline solutions (NaCl, KCl, MgCl2 and CaCl2) at both 0.16 and 0.60molkg(-1) on different facets of the gold and silver aqueous interfaces. We consider the Au/Ag(111), native Au/Ag(100) and reconstructed Au(100)(5×1) facets. For a given combination of metallic surface and facet, some variations in density profile are apparent across the different cations in solution, with the corresponding chloride counterion profiles remaining broadly invariant. All density profiles at the higher concentration are predicted to be very similar to their low-concentration counterparts. We find that each electrolyte responds differently to the different metallic surface and facets, particularly those of the divalent metal ions. Our findings reveal marked differences in density profiles between facets for a given metallic interface for both Mg(2+) and Ca(2+), with Na(+) and K(+) showing much less distinction. Mg(2+) was the only ion for which we find evidence of materials-dependent differences in interfacial solution structuring between the Ag and Au.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Controllable 3D assembly of multicomponent inorganic nanomaterials by precisely positioning two or more types of nanoparticles to modulate their interactions and achieve multifunctionality remains a major challenge. The diverse chemical and structural features of biomolecules can generate the compositionally specific organic/inorganic interactions needed to create such assemblies. Toward this aim, we studied the materials-specific binding of peptides selected based upon affinity for Ag (AgBP1 and AgBP2) and Au (AuBP1 and AuBP2) surfaces, combining experimental binding measurements, advanced molecular simulation, and nanomaterial synthesis. This reveals, for the first time, different modes of binding on the chemically similar Au and Ag surfaces. Molecular simulations showed flatter configurations on Au and a greater variety of 3D adsorbed conformations on Ag, reflecting primarily enthalpically driven binding on Au and entropically driven binding on Ag. This may arise from differences in the interfacial solvent structure. On Au, direct interaction of peptide residues with the metal surface is dominant, while on Ag, solvent-mediated interactions are more important. Experimentally, AgBP1 is found to be selective for Ag over Au, while the other sequences have strong and comparable affinities for both surfaces, despite differences in binding modes. Finally, we show for the first time the impact of these differences on peptide mediated synthesis of nanoparticles, leading to significant variation in particle morphology, size, and aggregation state. Because the degree of contact with the metal surface affects the peptide's ability to cap the nanoparticles and thereby control growth and aggregation, the peptides with the least direct contact (AgBP1 and AgBP2 on Ag) produced relatively polydispersed and aggregated nanoparticles. Overall, we show that thermodynamically different binding modes at metallic interfaces can enable selective binding on very similar inorganic surfaces and can provide control over nanoparticle nucleation and growth. This supports the promise of bionanocombinatoric approaches that rely upon materials recognition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

More than one million soldiers of the British Empire died in the First World War. The Imperial War Graves Commission, created in 1917, had as its mandate the obligation to care for their graves and memorials, in 1850 cemeteries in more than 100 countries around the globe. Its founder, Fabian Ware, hoped and expected this Commission to have even more enduring effects, yet the political origins of the organisation remain little understood. This chapter looks beyond the monuments erected by the Imperial War Graves Commission to the ideals and intent of its creators. It argues that the driving force behind this major commemorative work was not a desire to represent any fundamental break with the past, but an attempt to produce an institution that symbolised imperial cooperation and memorialised the war and its dead in a way that would continue to place the British Empire at the centre of world affairs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silver nanoprisms were transformed into nanodecahedra through photoinduction of ultraviolet (UV) light in the presence of titanium dioxide (TiO2) quantum dots (QDs). Subsequently, the silver nanodecahedra were reconverted to silver nanoprisms under sodium lamp if there was sufficient citrate in the reaction system. The localized surface plasmon resonance (LSPR) optical properties of silver nanoparticles were tuned during photoinduced shape conversion. The photocatalytic activity of TiO2 QDs assisted the conversion of prisms to decahedra upon UV light irradiation. Nevertheless, the presence of TiO2 did not inhibit the photoinduced reconversion from decahedra to prisms by sodium light. It was demonstrated that citrate was indispensable in the photoinduction process. In addition, oxygen in solution played a vital role in the reversible shape conversion of silver nanoparticles. Moreover, simulated sunlight can convert silver nanoprisms to nanodecahedra instead of UV light with assistance of TiO2 QDs, which would promote the photoinduced reaction of silver nanoparticles based on a natural light source.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we demonstrate for the first time the successful fabrication of well-dispersed ultrafine silver nanoparticles inside metal-organic frameworks through a single step gamma irradiation at room temperature. HKUST-1 crystals are soaked in silver nitrate aqueous solution and irradiated with a Cobalt 60 source across a range of irradiation doses to synthesize highly uniformly distributed silver nano-particles. The average size of the silver nanoparticles across the Ag@HKUST-1 materials is found to vary between 1.4 and 3 nm for dose exposures between 1 and 200 kGy, respectively. The Ag@HKUST-1 hybrid crystals exhibit strong surface plasmon resonance and are highly durable and efficient catalytic materials for the reduction of 4-nitrophenol to 4-aminophenol (up to 14.46 × 10-3 s-1 for 1 kGy Ag@HKUST-1). The crystals can be easily recycled for at least five successive cycles of reaction with a conversion efficiency higher than 99.9%. The gamma irradiation is demonstrated to be an effective and environmental friendly process for the synthesis of nano-particles across confined metal-organic frameworks at room temperature with potential applications in environmental science.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biofilm formation on membranes during water desalination operation and pre-treatments limits performance and causes premature membrane degradation. Here, we apply a novel surface modification technique to incorporate anti-microbial metal particles into the outer layer of four types of commercial polymeric membranes by cold spray. The particles are anchored on the membrane surface by partial embedment within the polymer matrix. Although clear differences in particle surface loadings and response to the cold spray were shown by SEM, the hybrid micro-filtration and ultra-filtration membranes were found to exhibit excellent anti-bacterial properties. Poly(sulfone) ultra-filtration membranes were used as for cross-flow filtration of Escherichia coli bacteria solutions to investigate the impact of the cold spray on the material[U+05F3]s integrity. The membranes were characterized by SEM-EDS, FT-IR and TGA and challenged in filtration tests. No bacteria passed through the membrane and filtrate water quality was good, indicating the membranes remained intact. No intact bacteria were found on hybrid membranes, loaded with up to 15. wt% silver, indicating the treatment was lysing bacteria on contact. However, permeation of the hybrid membranes was found to be reduced compared to control non-modified poly(sulfone) membranes due to the presence of the particles across the membrane material. The implementation of cold spray technology for the modification of commercial membrane products could lead to significant operational savings in the field of desalination and water pre-treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoinduced shape conversion of silver nanoparticles was realized using sunlight. The silver seeds were transformed to silver nanoprisms under sunlight when the concentration of citrate was low (≤5.0×10-4M). Nevertheless, sunlight converted the obtained silver nanoprisms to silver nanodecahedrons when the concentration of citrate in reaction system was increased. It was found that the ultraviolet light from sunlight played a vital role in the shape conversion from nanoprism to nanodecahedron. Lighting power density did not influence the shape conversion except for reaction rate. Besides, the silver nanodecahedrons were synthesized in the mixed solution of AgNO3 and citrate in absence of silver seeds through irradiation by simulated sunlight. The mechanism on the sunlight induced synthesis of silver nanoparticles was discussed. Anisotropic silver nanoparticles including nanoprisms and nanodecahedrons were obtained through controlling the citrate concentration and irradiation time by sunlight from green light source.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although agricultural productivity is critical for economic development very little is known about the causes of the large dispersion in agricultural productivity across the world. Microeconomic studies increasingly stress the lack of land rights in many poor countries as an important source of low productivity. This paper examines the role played by land titles in explaining differences in agricultural productivity for 93 countries. Using the per capita accumulated value of gold and silver production in the 16th and 17th centuries as instruments for land rights it is shown that enforcement of land titles is a significant source of agricultural productivity inequality across the world.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A small series of norbornane bisether diguanidines have been synthesized and evaluated as antibacterial agents. The key transformation-bisalkylation of norbornane diol 6-was not successful using Williamson methodology but has been accomplished using Ag2O mediated alkylation. Further functionalization to incorporate two guanidinium groups gave rise to a series of structurally rigid cationic amphiphiles; several of which (16d, 16g and 16h) exhibited antibiotic activity. For example, compound 16d was active against a broad range of bacteria including Pseudomonas aeruginosa (MIC = 8 µg/mL), Escherichia coli (MIC = 8 µg/mL) and methicillin-resistant Staphylococcus aureus (MIC = 8 µg/mL).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sensitive electrochemical acetylcholinesterase (AChE) biosensor based on a reduced graphene oxide (rGO) and silver nanocluster (AgNC) modified glassy carbon electrode (GCE) was developed. rGO and AgNC nanomaterials with excellent conductivity, catalytic activity and biocompatibility offered an extremely hydrophilic surface, which facilitated the immobilization of AChE to fabricate the organophosphorus pesticide biosensor. Carboxylic chitosan (CChit) was used as a cross-linker to immobilize AChE on a rGO and AgNC modified GCE. The AChE biosensor showed favorable affinity to acetylthiocholine chloride (ATCl) and could catalyze the hydrolysis of ATCl. Based on the inhibition effect of organophosphorus pesticides on the AChE activity, using phoxim as a model compound, the inhibition effect of phoxim was proportional to its concentration ranging from 0.2 to 250 nM with a detection limit of 81 pM estimated at a signal-to-noise ratio of 3. The developed biosensor exhibited good sensitivity, stability and reproducibility, thus providing a promising tool for analysis of enzyme inhibitors and direct analysis of practical samples.