914 resultados para Side shift
Resumo:
The Aquivion short-side-chain (SSC) perfluorosulfonic acid (PFSA) ionomer was adopted in catalyst layers (CL) of polymer electrolyte membrane water electrolysers (PEMWE) instead of long-side-chain (LSC) Nafion ionomer. The effects of SSC ionomer content in CL for oxygen evolution reaction were studied in half cell with cyclic voltammetry and steady state linear sweep. In a single cell test the MEA with SSC-PFSA Aquivion ionomer exhibited better thermal stability than the one with LSC-PFSA Nafion ionomer at 90 °C. The cell voltage at a current density of 1 A cm was 1.63 V at 90 °C using the SSC-PFSA Aquivion ionomer binder, Nafion 117 membrane, and without back pressurizing. In a continuous operation the cell voltage degradation rate of the MEA using Aquivion ionomer binder was only about 0.82 mV h.
Resumo:
An unusual application of hydrological understanding to a police search is described. The lacustrine search for a missing person provided reports of bottom-water currents in the lake and contradictory indications from cadaver dogs. A hydrological model of the area was developed using pre-existing information from side scan sonar, a desktop hydrogeological study and deployment of water penetrating radar (WPR). These provided a hydrological theory for the initial search involving subaqueous groundwater flow, focused on an area of bedrock surrounded by sediment, on the lake floor. The work shows the value a hydrological explanation has to a police search operation (equally to search and rescue). With hindsight, the desktop study should have preceded the search, allowing better understanding of water conditions. The ultimate reason for lacustrine flow in this location is still not proven, but the hydrological model explained the problems encountered in the initial search.
Resumo:
Due to the intermittent nature of renewable generation it is desirable to consider the potential of controlling the demand-side load to smooth overall system demand. The architecture and control methodologies of such a system on a large scale would require careful consideration. Some of these considerations are discussed in this paper; such as communications infrastructure, systems architecture, control methodologies and security. A domestic fridge is used in this paper as an example of a controllable appliance. A layered approach to smart-grid is introduced and it can be observed how each smart-grid component from physical cables, to the end-devices (or smart-applications) can be mapped to these set layers. It is clear how security plays an integral part in each component of the smart-grid so this is also an integral part of each layer. The controllable fridge is described in detail and as one potential smart-grid application which maps to the layered approach. A demonstration system is presented which involves a Raspberry Pi (a low-power, low-cost device representing the appliance controller).
Resumo:
This paper presents a new method for online determination of the Thèvenin equivalent parameters of a power system at a given node using the local PMU measurements at that node. The method takes into account the measurement errors and the changes in the system side. An analysis of the effects of changes in system side is carried out on a simple two-bus system to gain an insight of the effect of system side changes on the estimated Thévenin equivalent parameters. The proposed method uses voltage and current magnitudes as well as active and reactive powers; thus avoiding the effect of phase angle drift of the PMU and the need to synchronize measurements at different instances to the same reference. Applying the method to the IEEE 30-bus test system has shown its ability to correctly determine the Thévenin equivalent even in the presence of measurement errors and/or system side changes.
Resumo:
Demand Side Management (DSM) programmes are designed to shift electrical loads from peak times. Demand Response (DR) algorithms automate this process for controllable loads. DR can be implemented explicitly in terms of Peak to Average Ratio Reduction (PARR), in which case the maximum peak load is minimised over a prediction horizon by manipulating the amount of energy given to controllable loads at different times. A hierarchical predictive PARR algorithm is presented here based on Dantzig-Wolfe decomposition. © 2013 IEEE.
Resumo:
Context Medical students can have difficulty in distinguishing left from right. Many infamous medical errors have occurred when a procedure has been performed on the wrong side, such as in the removal of the wrong kidney. Clinicians encounter many distractions during their work. There is limited information on how these affect performance.
Objectives Using a neuropsychological paradigm, we aim to elucidate the impacts of different types of distraction on left–right (LR) discrimination ability.
Methods Medical students were recruited to a study with four arms: (i) control arm (no distraction); (ii) auditory distraction arm (continuous ambient ward noise); (iii) cognitive distraction arm (interruptions with clinical cognitive tasks), and (iv) auditory and cognitive distraction arm. Participants’ LR discrimination ability was measured using the validated Bergen Left–Right Discrimination Test (BLRDT). Multivariate analysis of variance was used to analyse the impacts of the different forms of distraction on participants’ performance on the BLRDT. Additional analyses looked at effects of demographics on performance and correlated participants’ self-perceived LR discrimination ability and their actual performance.
Results A total of 234 students were recruited. Cognitive distraction had a greater negative impact on BLRDT performance than auditory distraction. Combined auditory and cognitive distraction had a negative impact on performance, but only in the most difficult LR task was this negative impact found to be significantly greater than that of cognitive distraction alone. There was a significant medium-sized correlation between perceived LR discrimination ability and actual overall BLRDT performance.
Conclusions
Distraction has a significant impact on performance and multifaceted approaches are required to reduce LR errors. Educationally, greater emphasis on the linking of theory and clinical application is required to support patient safety and human factor training in medical school curricula. Distraction has the potential to impair an individual's ability to make accurate LR decisions and students should be trained from undergraduate level to be mindful of this.
Resumo:
A spectroscopic study of the He-alpha (1s(2) S-1(0) - 1s2p P-1(1)) line emission (4749.73 eV) from high density plasma was conducted. The plasma was produced by irradiating Ti targets with intense (I approximate to 1x10(19) W/cm(2)), 400nm wavelength high contrast, short (45fs) p-polarized laser pulses at an angle of 45 degrees. A line shift up to 3.4 +/- 1.0 eV (1.9 +/- 0.55 m angstrom) was observed in the He-alpha line. The line width of the resonance line at FWHM was measured to be 12.1 +/- 0.6 eV (6.7 +/- 0.35 m angstrom). For comparison, we looked into the emission of the same spectral line from plasma produced by irradiating the same target with laser pulses of reduced intensities (approximate to 10(17) W/cm(2)): we observed a spectral shift of only 1.8 +/- 1.0 eV (0.9 +/- 0.55m angstrom) and the line-width measures up to 5.8 +/- 0.25 eV (2.7 +/- 0.35 m angstrom). These data provide evidence of plasma polarization shift of the Ti He-alpha line.