993 resultados para SiC NR
Resumo:
It is observed that reclamation of natural rubber latex based rubber using 2,2'-dibenzamidodiphenvldisulphide as reclaiming agent is an optional methodology for recycling of waste latex rubber (WLR). For progressive replacement of virgin natural rubber by the reclaim, two alternatives curing system were investigated: adjustment or reduction of the curing system with increasing reclaim content, to compensate for the extra amount of curatives brought along by the reclaim. For fixed curing system, as if the reclaim were equivalent to virgin NR. The cure behavior, final crosslink density and distribution, mechanical properties, and dynamic viscoelastic properties of the blends with reclaimed WLR are measured and compared with the virgin compound. The morphology of the blends, sulfur migration, and final distribution are analyzed.The mechanical and dynamic viscoelastic properties deteriorate for both curing systems, but to a lesser extent for fixed curing system compared to adjusted curing system. With the fixed cure system, many properties like tensile strength and compression set do still deteriorate, but tan 6 and Mrrr„/Murxr, representative for the rolling resistance of tires are improved. On the other hand, with the adjusted cure system both mechanical and dynamic properties still deteriorate.
Science and technology of rubber reclamation with special attention to NR-based waste latex products
Resumo:
A comprehensive overview of reclamation of cured rubber with special emphasis on latex reclamation is depicted in this paper. The latex industry has expanded over the years to meet the world demands for gloves, condoms, latex thread, etc. Due to the strict specifications for the products and the unstable nature of the latex as high as 15% of the final latex products are rejected. As waste latex rubber (WLR) represents a source of high-quality rubber hydrocarbon, it is a potential candidate for generating reclaimed rubber of superior quality. The role of the different components in the reclamation recipe is explained and the reaction mechanism and chemistry during reclamation are discussed in detail. Different types of reclaiming processes are described with special reference to processes, which selectively cleave the cross links in the vulcanized rubber. The state-of-the-art techniques of reclamation with special attention on latex treatment are reviewed. An overview of the latest development concerning the fundamental studies in the field of rubber recycling by means of low-molecular weight compounds is described. A mathematical model description of main-chain and crosslink scission during devulcanization of a rubber vulcanizate is also given.
Resumo:
The latex industry has expanded over the years to meet the world demands for gloves, condoms, latex thread etc. Because of the strict specifications for the products and the unstable nature of the latex, as high as 15%, of the final latex products are rejected. Since waste latex rubber (WLR) represents a source of high quality rubber hydrocarbon, it is a potential candidate for generating reclaimed rubber of superior quality. Two types of WLR with different amounts of polysulfidic bridges are used in these experiments, which are reclaimed with variation of the concentration of the reclaiming agents, the reclamation temperature and time, Di phenyldisultide, 2-aminophenyldisulfide and 2,2'-dibenzamidodiphenyldisulfide (DBADPDS) are used as reclaiming agents, and the effect of diphenyldisulfides (DPDS) with different substituents, on the reclamation efficiency of WLR is investigated. A kinetic study of the reclamation reaction with the three reclaiming agents is done. The reaction rates and activation energies are calculated and compared with literature values. The comparative study of the three different reclaiming agents shows that (DBADPDS) is able to break the crosslinks at temperature levels 20'C below the temperature levels normally used with DPDS. Another advantage of this reclaiming agent is the reduced smell during the reclamation process and of the final reclaims, one of the most important shortcomings of other disulfides used for this purpose.
Resumo:
Ethylene-propylene-diene rubber (EPDM) and isobutylene-isoprene rubber (IIR) were compounded, precured to a low degree, and then were blended with natural rubber (NR). The compounding ingredients for NR were then added and the final curing was done. NR/ EPDM and NR/IIR blends, prepared using this method, were found to possess much improved mechanical properties as compared to their conventional counterparts. The optimum precuring crosslink density that has to be given to the EPDM and IIR phases has been determined.
Resumo:
Butyl (IIR) tube reclaim (RR) was mixed with carbon black filled natural rubber (NR) compounds at various percentages. The blend containing a low percentage of RR was found to show improved ageing resistance and improved processability with out much reduction in the mechanical properties.
Resumo:
Amine Terminated Liquid Natural Rubber (ATNR) was used as a plasticiser in filled NR and NBR compounds replacing oil/DOP. The scorch time and cure time were found to be lowered when ATNR was used as the plasticiser. ATNR was found to improve the mechanical properties like tensile strength, tear strength and modulus of the vulcanizates . The ageing resistance of the vulcanizates containing ATNR was superior compared to the vulcanizates containing oil/DOP.
Resumo:
Polymer-solvent interaction parameters for the blends of natural rubber (NR) with styrene-butadiene rubber (SBR) and polybutadiene rubber ( BR) are calculated using the Flory-Rehner equation by equating the network density of the vulcanizates in two solvents.
Resumo:
Blends of 50/50 natural rubber (NR) and styrene-butadiene rubber (SBR) are vulcanized using several conventional and semi-EV systems. The cure characteristics and vulcanizate properties are compared. The quantity and quality of crosslinks in each case are deciphered by chemical probes to correlate them with the vulcanizate properties.
Resumo:
A carbon black filled 50/50 Natural Rubber (NR)/Polybutadiene Rubber (BR) blend is vulcanized using several conventional systems designed by varying the amounts of sulphur and accelerator . The cure characteristics and the vulcanizate properties are compared. The quality and quantity of crosslinks in each case are deciphered by chemical probes to correlate them with the vulcanizate properties.
Resumo:
In natural rubber/high styrene resin microcellular sheets, part of natural rubber was replaced by latex reclaim prepared from waste latex products. The mechanical properties and cell structure of the products were evaluated. It was found that latex reclaim can replace about 30% of natural rubber without affecting the technical properties of the microcellular sheets.
Resumo:
Carbon Black is incorporated In natural rubber latex in , the presence of polyethylene glycol. The dispersion of carbon blade in the vulcanizatea is analyzed using polaroid M.4 land camera The mechanical properties of the carbon black meeterbatched NR/SBR blend Is compared with that of conventional NR/SBR blend before and after ageing , The resilience, flex resistance and hardness are found to be superior for N-LCMISBR compounds. The compression set and abrasion resistance are comparable for both types of blends . The processebiity and die swell of these blends at different shear rates are also compared.
Resumo:
ABSTRACT: Rubber seed oil was used as a multipurpose ingredient in natural rubber (NR) and styrene butadiene rubber (SBR) compounds. The study shows that the oil, when substituted for conventional plasticiser, imparts excellent mechanical properties to NR and SBR vulcanizates. Further, it also improves aging resistance, reduces cure time, increases abrasion resistance and flex resistance, and reduces blooming.
Resumo:
Department of Applied Chemistry, Cochin University of Science and Technology