735 resultados para Sex biases
Resumo:
We use microwave retrievals of upper tropospheric humidity (UTH) to estimate the impact of clear-sky-only sampling by infrared instruments on the distribution, variability and trends in UTH. Our method isolates the impact of the clear-sky-only sampling, without convolving errors from other sources. On daily time scales IR-sampled UTH contains large data gaps in convectively active areas, with only about 20-30 % of the tropics (30 S 30 N) being sampled. This results in a dry bias of about -9 %RH in the area-weighted tropical daily UTH time series. On monthly scales, maximum clear-sky bias (CSB) is up to -30 %RH over convectively active areas. The magnitude of CSB shows significant correlations with UTH itself (-0.5) and also with the variability in UTH (-0.6). We also show that IR-sampled UTH time series have higher interannual variability and smaller trends compared to microwave sampling. We argue that a significant part of the smaller trend results from the contrasting influence of diurnal drift in the satellite measurements on the wet and dry regions of the tropics.
Resumo:
This article investigates income and population biases in the distribution of aid and decomposes recipients by geographic region. Previous analyses aggregate recipients and assume biases have an equal impact. Results demonstrate that although while a bias towards middle-income and medium-sized countries persists in the full sample, the extent of such biases differs significantly by region.
Resumo:
This study examines the effect of seasonally varying chlorophyll on the climate of the Arabian Sea and South Asian monsoon. The effect of such seasonality on the radiative properties of the upper ocean is often a missing process in coupled general circulation models and its large amplitude in the region makes it a pertinent choice for study to determine any impact on systematic biases in the mean and seasonality of the Arabian Sea. In this study we examine the effects of incorporating a seasonal cycle in chlorophyll due to phytoplankton blooms in the UK Met Office coupled atmosphere-ocean GCM HadCM3. This is achieved by performing experiments in which the optical properties of water in the Arabian Sea - a key signal of the semi-annual cycle of phytoplankton blooms in the region - are calculated from a chlorophyll climatology derived from Sea-viewing Wide Field-of-View Sensor (SeaWiFS) data. The SeaWiFS chlorophyll is prescribed in annual mean and seasonally-varying experiments. In response to the chlorophyll bloom in late spring, biases in mixed layer depth are reduced by up to 50% and the surface is warmed, leading to increases in monsoon rainfall during the onset period. However when the monsoons are fully established in boreal winter and summer and there are strong surface winds and a deep mixed layer, biases in the mixed layer depth are reduced but the surface undergoes cooling. The seasonality of the response of SST to chlorophyll is found to depend on the relative depth of the mixed layer to that of the anomalous penetration depth of solar fluxes. Thus the inclusion of the effects of chlorophyll on radiative properties of the upper ocean acts to reduce biases in mixed layer depth and increase seasonality in SST.