893 resultados para Selenium sources
Resumo:
Organic matter amendments are applied to contaminated soil to provide a better habitat for revegetation and remediation, and olive mill waste compost (OMWC) has been described as a promising material for this aim. We report here the results of an incubation experiment carried out in flooded conditions to study its influence in As and metal solubility in a trace elements contaminated soil. NPK fertilisation and especially organic amendment application resulted in increased As, Se and Cu concentrations in pore water. Independent of the amendment, dimethylarsenic acid (DMA) was the most abundant As species in solution. The application of OMWC increased pore water dissolved organic-carbon (DOC) concentrations, which may explain the observed mobilisation of As, Cu and Se; phosphate added in NPK could also be in part responsible of the mobilisation caused in As. Therefore, the application of soil amendments in mine soils may be particularly problematic in flooded systems. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Efficient Se biofortification programs require a thorough understanding of the accumulation and distribution of Se species within the rice grain. Therefore, the translocation of Se species to the filling grain and their spatial unloading were investigated. Se species were supplied via cut flag leaves of intact plants and excised panicle stems subjected to a +/- stem-girdling treatment during grain fill. Total Se concentrations in the flag leaves and grain were quantified by inductively coupled plasma mass spectrometry. Spatial accumulation was investigated using synchrotron X-ray fluorescence microtomography. Selenomethionine (SeMet) and selenomethylcysteine (SeMeSeCys) were transported to the grain more efficiently than selenite and selenate. SeMet and SeMeSeCys were translocated exclusively via the phloem, while inorganic Se was transported via both the phloem and xylem. For SeMet- and SeMeSeCys-fed grain, Se dispersed throughout the external grain layers and into the endosperm and, for SeMeSeCys, into the embryo. Selenite was retained at the point of grain entry. These results demonstrate that the organic Se species SeMet and SeMeSeCys are rapidly loaded into the phloem and transported to the grain far more efficiently than inorganic species. Organic Se species are distributed more readily, and extensively, throughout the grain than selenite.
A review of recent developments in the speciation and location of arsenic and selenium in rice grain
Resumo:
Rice is a staple food yet is a significant dietary source of inorganic arsenic, a class 1, nonthreshold carcinogen. Establishing the location and speciation of arsenic within the edible rice grain is essential for understanding the risk and for developing effective strategies to reduce grain arsenic concentrations. Conversely, selenium is an essential micronutrient and up to 1 billion people worldwide are selenium-deficient. Several studies have suggested that selenium supplementation can reduce the risk of some cancers, generating substantial interest in biofortifying rice. Knowledge of selenium location and speciation is important, because the anti-cancer effects of selenium depend on its speciation. Germanic acid is an arsenite/silicic acid analogue, and location of germanium may help elucidate the mechanisms of arsenite transport into grain. This review summarises recent discoveries in the location and speciation of arsenic, germanium, and selenium in rice grain using state-of-the-art mass spectrometry and synchrotron techniques, and illustrates both the importance of high-sensitivity and high-resolution techniques and the advantages of combining techniques in an integrated quantitative and spatial approach.
Resumo:
Quantification and speciation of volatile selenium (Se) fluxes in remote areas has not been feasible previously, due to the absence of a simple and easily transportable trapping technique that preserves speciation. This paper presents a chemo-trapping method with nitric acid (HNO3) for volatile Se species, which preserves speciation of trapped compounds. The recovery and speciation of dimethylselenide (DMSe) and dimethyl diselenide (DMDSe) entrained through both concentrated nitric acid and hydrogen peroxide (H2O2) were compared by HPLC-ICP-MS and HPLC-HG-AFS analyses. It was demonstrated that trap reproducibility was better for nitric acid and a recovery of 65.2 +/- 1.9% for DMSe and 81.3 +/- 3.9% for DMDSe was found in nitric acid traps. HPLC-ES-MS identified dimethyl selenoxide (DMSeO) as the trapped product of DMSe. Methylseleninic acid (MSA) was identified to be the single product of DMDSe trapping. These oxidized derivatives have a high stability and low volatility, which makes nitric acid a highly attractive trapping liquid for volatile Se species and enables reconstruction of the speciation of those species. The presented trapping method is simple, quantifiable, reproducible, and robust and can potentially be applied to qualitatively and quantitatively study Se volatilization in a wide range of natural environments.
Resumo:
A reconnaissance of 23 paddy fields, from three Bangladesh districts, encompassing a total of 230 soil and rice plant samples was conducted to identify the extent to which trace element characteristics in soils and irrigation waters are reflected by the harvested rice crop. Field sites were located on two soil physiographic units with distinctly different As soil baseline and groundwater concentrations. For arsenic (As), both straw and grain trends closely fitted patterns observed for the soils and water. Grain concentration characteristics for selenium (Se), zinc (Zn), and nickel (Ni), however, were markedly different. Regressions of shoot and grain As against grain Se, Zn, and Ni were highly significant (P <0.001), exhibiting a pronounced decline in grain trace-nutrient quality with increasing As content. To validate this further, a pot experiment cultivar screening trial, involving commonly cultivated high yielding variety (HYV) rice grown alongside two U.S. rice varieties characterized as being As tolerant and susceptible, was conducted on an As-amended uniform soil. Findings from the trial confirmed that As perturbed grain metal(loid) balances, resulting in severe yield reductions in addition to constraining the levels of Se, Zn, and Ni in the grain.
Resumo:
For up to 1 billion people worldwide, insufficient dietary intake of selenium (Se) is a serious health constraint Cereals are the dominant Se source for those on low protein diets, as typified by the global malnourished population. With crop Se content constrained largely by underlying geology, regional soil Se variations are often mirrored by their locally grown staples. Despite this, the Se concentrations of much of the world's rice, the mainstay of so many, is poorly characterized, for both total Se content and Se speciation. In this study, 1092 samples of market sourced polished rice were obtained. The sampled rice encompassed dominant rice producing and exporting countries. Rice from the U.S. and India were found to be the most enriched, while mean average levels were lowest in Egyptian rice: similar to 32-fold less than their North American equivalents. By weighting country averages by contribution to either global production or export, modeled baseline values for both were produced. Based on a daily rice consumption of 300 g day(-1), around 75% of the grains from the production and export pools would fail to provide 70% of daily recommended Se intakes. Furthermore, Se localization and speciation characterization using X-ray fluorescence (mu-XRF) and X-ray absorption near edge structure (mu-XANES) techniques were investigated in a Se-rich sample. The results revealed that the large majority of Se in the endosperm was present in organic forms.
Resumo:
Selenium (Se) is an essential micronutrient for many organisms, including plants, animals and humans. As plants are the main source of dietary Se, plant Se metabolism is therefore important for Se nutrition of humans and other animals. However, the concentration of Se in plant foods varies between areas, and too much Se can lead to toxicity. As we discuss here, plant Se uptake and metabolism can be exploited for the purposes of developing high-Se crop cultivars and for plant-mediated removal of excess Se from soil or water. Here, we review key developments in the current understanding of Se in higher plants. We also discuss recent advances in the genetic engineering of Se metabolism, particularly for biofortification and phytoremediation of Se-contaminated environments.
Resumo:
In April 1998, a holding lagoon containing pyrite ore processing waste, failed and released 5-6 million m3 of highly polluting sludge and acidic water. Over 2650 ha of the internationally important Doñana Natural Park became contaminated, along with <100 ha of the more pristine Doñana National Park. In order to assess the affect of the spill on waterfowl from Doñana, bone and liver samples from 124 individuals have been analysed for As, Pb, Cu, Zn and Se. Five species have been studied, from the Rallidae (rails), Anatini (dabbling ducks) and Aythyini (pochards) families. Geometric mean bone concentrations 2-3 months after the spill were in the order of Zn > Cu > Pb > Se > As, while liver concentrations were in the order of Zn > Cu > Se > Pb > As. Dry weight bone concentrations ranged from n.d-1.76 mg kg(-1) As, 109.4-247.6 mg kg(-1) Zn, 0.06-1.27 mg kg(-1) Se, n.d-134.11 mg kg(-1) Pb, and 2.18-8.92 mg kg(-1) Cu. Wet weight liver concentrations ranged from n.d-0.34 mg kg(-1) As, 29.8-220.1 mg kg(-1) Zn, 0.15-0.85 mg kg(-1) Se, n.d-3.80 mg kg(-1) Pb, and 7.30-742.96 mg kg(-1) Cu. The most important factor related to the accumulation of these metals was commonly species; however, location and sex also had important effects on liver As levels, location and age affected Cu levels, while Zn and Pb were affected by age, sex and location. Birds from Natural Park areas were found to have significantly higher levels of bone Zn, Pb and Cu, and liver As and Cu than birds from National Park areas. Female birds had higher liver As, Zn and Pb than males; whilst adults appeared to have lower bone As and Zn but higher liver Pb than chicks/juveniles. Although metal concentrations were elevated in certain individuals, in the majority of birds studied, they did not reach levels widely considered to be toxic. However, it would appear that As and Cu liver levels (which may be indicative of short-medium term pollutant exposure) were elevated in waterbirds which died in the spill contaminated Natural Park, 2-3 months after the disaster.
Resumo:
White storks (Ciconia ciconia) fed in contaminated waters resulting from the Aznacollar acid mining-sludge spillage into the R. Guadiamar, which feeds the eastern flank of the Guadalquivir marshes (Doñana), S.W. Spain. The sludge was rich in a range of toxic elements, and in organic pollutants such as the aromatic amines. Storks did not exhibit elevated metals in their blood immediately following the accident, but chick blood collected the year following the accident showed genotoxic damage compared to the controls. In this study lead isotope analysis was used to assess if the storks had ingested sludge-derived contaminants. The sludge lead isotope ratio was distinct from that of the Doñana sediments. The stork blood lead isotope ratios exactly matched that of the sludge. It was concluded that the storks had ingested sludge-derived contaminants. A detailed study of the lead contamination along the R. Guadiamar and the R. Guadalquivir (of which the Guadiamar is a tributary) was also conducted to place the white stork colony lead exposure in the context of the spatial contamination of the storks' habitat.
Resumo:
Science journalists call upon experts for background and for clarification and comment on scientific findings. This paper examines how science writers choose and use experts, and it focuses on several cases of reporting about genetics and behavior. Our research included two sources of data: interviews with 15 science reporters and three print media samples of coverage of genetics and behavior - alcoholism (between 1980-1995), homosexuality (in 1993 and 1995), and mental illness (between 1970-1995). Science reporters seek relevant and specific experts for nearly every story. Good sources are knowledgeable, are connected to prestigious institutions, are direct and articulate and don't overqualify statements, and they return phone calls. The mean number of experts quoted was 2.8 per story, differing for alcoholism (3.5), homosexuality (2.8), and mental illness (2.6). Researchers and scientists predominated among experts quoted. Quotes were used to provide context, give legitimization, as explication, to provide a kind of balance, and to outline implications. For the homosexuality sample, a significantly greater percentage of activists and advocates were quoted (21 percent compared with 5 percent and 1 percent in other samples, X <0.0001). "Lay" quotes for alcoholism and mental illness were minimal. Except for homosexuality, whose advocates are organized, those "affected" do not have a voice in genetics news stories.
Resumo:
In this article we review recent work on the history of French negation in relation to three key issues in socio-historical linguistics: identifying appropriate sources, interpreting scant or anomalous data, and interpreting generational differences in historical data. We then turn to a new case study, that of verbal agreement with la plupart, to see whether this can shed fresh light on these issues. We argue that organising data according to the author’s date of birth is methodologically sounder than according to date of publication. We explore the extent to which different genres and text types reflect changing patterns of usage and suggest that additional, different case-studies are required in order to make more secure generalisations about the reliability of different sources.
Resumo:
Dioxin contamination of the food chain typically occurs when cocktails of combustion residues or polychlorinated biphenyl (PCB) containing oils become incorporated into animal feed. These highly toxic compounds are bioaccumulative with small amounts posing a major health risk. The ability to identify animal exposure to these compounds prior to their entry into the food chain may be an invaluable tool to safeguard public health. Dioxin-like compounds act by a common mode of action and this suggests that markers or patterns of response may facilitate identification of exposed animals. However, secondary co-contaminating compounds present in typical dioxin sources may affect responses to compounds. This study has investigated for the first time the potential of a metabolomics platform to distinguish between animals exposed to different sources of dioxin contamination through their diet. Sprague-Dawley rats were given feed containing dioxin-like toxins from hospital incinerator soot, a common PCB oil standard and pure 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (normalized at 0.1 µg/kg TEQ) and acquired plasma was subsequently biochemically profiled using ultra high performance liquid chromatography (UPLC) quadropole time-of-flight-mass spectrometry (QTof-MS). An OPLS-DA model was generated from acquired metabolite fingerprints and validated which allowed classification of plasma from individual animals into the four dietary exposure study groups with a level of accuracy of 97-100%. A set of 24 ions of importance to the prediction model, and which had levels significantly altered between feeding groups, were positively identified as deriving from eight identifiable metabolites including lysophosphatidylcholine (16:0) and tyrosine. This study demonstrates the enormous potential of metabolomic-based profiling to provide a powerful and reliable tool for the detection of dioxin exposure in food-producing animals.