866 resultados para Science and Mathematics Teaching
Resumo:
The Modeling method of teaching has demonstrated well--‐documented success in the improvement of student learning. The teacher/researcher in this study was introduced to Modeling through the use of a technique called White Boarding. Without formal training, the researcher began using the White Boarding technique for a limited number of laboratory experiences with his high school physics classes. The question that arose and was investigated in this study is “What specific aspects of the White Boarding process support student understanding?” For the purposes of this study, the White Boarding process was broken down into three aspects – the Analysis of data through the use of Logger Pro software, the Preparation of White Boards, and the Presentations each group gave about their specific lab data. The lab used in this study, an Acceleration of Gravity Lab, was chosen because of the documented difficulties students experience in the graphing of motion. In the lab, students filmed a given motion, utilized Logger Pro software to analyze the motion, prepared a White Board that described the motion with position--‐time and velocity--‐time graphs, and then presented their findings to the rest of the class. The Presentation included a class discussion with minimal contribution from the teacher. The three different aspects of the White Boarding experience – Analysis, Preparation, and Presentation – were compared through the use of student learning logs, video analysis of the Presentations, and follow--‐up interviews with participants. The information and observations gathered were used to determine the level of understanding of each participant during each phase of the lab. The researcher then looked for improvement in the level of student understanding, the number of “aha” moments students had, and the students’ perceptions about which phase was most important to their learning. The results suggest that while all three phases of the White Boarding experience play a part in the learning process for students, the Presentations provided the most significant changes. The implications for instruction are discussed.
Resumo:
This study investigated the effectiveness of incorporating several new instructional strategies into an International Baccalaureate (IB) chemistry course in terms of how they supported high school seniors’ understanding of electrochemistry. The three new methods used were (a) providing opportunities for visualization of particle movement by student manipulation of physical models and interactive computer simulations, (b) explicitly addressing common misconceptions identified in the literature, and (c) teaching an algorithmic, step-wise approach for determining the products of an aqueous solution electrolysis. Changes in student understanding were assessed through test scores on both internally and externally administered exams over a two-year period. It was found that visualization practice and explicit misconception instruction improved student understanding, but the effect was more apparent in the short-term. The data suggested that instruction time spent on algorithm practice was insufficient to cause significant test score improvement. There was, however, a substantial increase in the percentage of the experimental group students who chose to answer an optional electrochemistry-related external exam question, indicating an increase in student confidence. Implications for future instruction are discussed.
Resumo:
The purpose of this project was to investigate the effect of using of data collection technology on student attitudes towards science instruction. The study was conducted over the course of two years at Madison High School in Adrian, Michigan, primarily in college preparatory physics classes, but also in one college preparatory chemistry class and one environmental science class. A preliminary study was conducted at a Lenawee County Intermediate Schools student summer environmental science day camp. The data collection technology used was a combination of Texas Instruments TI-84 Silver Plus graphing calculators and Vernier LabPro data collection sleds with various probeware attachments, including motion sensors, pH probes and accelerometers. Students were given written procedures for most laboratory activities and were provided with data tables and analysis questions to answer about the activities. The first year of the study included a pretest and posttest measuring student attitudes towards the class they were enrolled in. Pre-test and post-test data were analyzed to determine effect size, which was found to be very small (Coe, 2002). The second year of the study focused only on a physics class and used Keller’s ARCS model for measuring student motivation based on the four aspects of motivation: Attention, Relevance, Confidence and Satisfaction (Keller, 2010). According to this model, it was found that there were two distinct groups in the class, one of which was motivated to learn and the other that was not. The data suggest that the use of data collection technology in science classes should be started early in a student’s career, possibly in early middle school or late elementary. This would build familiarity with the equipment and allow for greater exploration by the student as they progress through high school and into upper level science courses.
Resumo:
This research project measured the effects of real-world content in a science classroom by determining change (deep knowledge of life science content, including ecosystems from MDE – Grade Level Content Expectations) in a subset of students (6th Grade Science) that may result from the addition of curriculum (real-world content of rearing trout in the classroom). Data showed large gains from the pre-test to post-test in students from both the experimental and control groups. The ecology unit with the implementation of real-world content [trout] was even more successful, and improved students’ deep knowledge of ecosystem content from Michigan’s Department of Education Grade Level Content Expectations. The gains by the experimental group on the constructed response section of the test, which included higher cognitive level items, were significant. Clinical interviews after the post-test confirmed increases in deep knowledge of ecosystem concepts in the experimental group, by revealing that a sample of experimental group students had a better grasp of important ecology concepts as compared to a sample of control group students.
Resumo:
The purpose of the study was to design, implement, and assess the effects of a teaching unit about fuel sources and chemical energy on students’ learning. The unit was designed to incorporate students’ experiences in a way that was aligned with the Michigan High School Content Expectations. The study was completed with all of the students taking General Chemistry in a rural Michigan high school in the 2010-11 school year. There were 138 participants total. The participants were mostly Caucasian and the majority were in the 11th grade. Of these, 77 constituted the experimental group and were taught the unit. The additional 61 participants in the control group were given the posttest only. Data was derived from the results of pre/post tests, final assessment projects, and the researcher’s observations. A pretest that contained questions about the fuel sources was administered at the beginning of the unit. An identical posttest was administered at the completion of the unit. A final assessment project required students to choose the best fuel source for the area, and support their opinion with facts and data from their research or the learning activities and labs performed in class. The results of the study revealed that the teaching unit did produce significant learning gains in the experimental group. The results also indicated that the teaching unit added value to the current General Chemistry curriculum by expanding what students were learning. The instructional goals of the unit were aligned with the Michigan High School Content Expectations. The results also revealed that the students were able to learn to support their thinking and decisions with explanations based on the data and labs. These are essential science literacy skills. The study supported the view that connecting the required curriculum with students’ experiences and interests was effective, and that students can learn important science literacy skills, such as providing support for arguments and communicating scientific explanations, when given adequate teacher support.
Resumo:
Part I What makes science hard for newcomers? 1) The background (briefly) of my research - (why the math anxiety model doesn’t fit) 2) The Tier analysis (a visual) – message: there are many types of science learners in your class than simply younger versions of yourself 3) Three approaches (bio, chem, physics) but only one Nature 4) The (different) vocabularies of the three Sciences 5) How mathematics is variously used in Science Part II Rules and rules-driven assignments- lQ vs OQ1) How to incorporate creativity into assignments and tests? 2) Tests- borrowing “thought questions" from other fields (If Columbus hadn't discovered the new World, when and under whose law would it have been discovered?) 3) Grading practices (partial credit, post-exam credit for finding and explaining nontrivial errors 4) Icing on the cake – applications, examples of science/engineering from Tuesdays NY Times Part III Making Change at the Departmental Level 1) Taking control of at least some portion of the curriculum 2) Varying style of presentation 3) Taking control of at least some portion of the exams 4) GRADING pros and cons of grading on a curve 5) Updating labs and lab reporting.
Resumo:
This study investigated the effect that the video game Portal 2 had on students understanding of Newton’s Laws and their attitudes towards learning science during a two-week afterschool program at a science museum. Using a pre/posttest and survey design, along with instructor observations, the results showed a statistically relevant increase in understanding of Newton’s Laws (p=.02<.05) but did not measure a relevant change in attitude scores. The data and observations suggest that future research should pay attention to non-educational aspects of video games, be careful about the amount of time students spend in the game, and encourage positive relationships with game developers.
Resumo:
The late Paleozoic Cutler Formation, where exposed near the modern-day town of Gateway, Colorado, has traditionally been interpreted as the product of alluvial fan deposition within the easternmost portion of the Paradox Basin. The Paradox Basin formed between the western margin of the Uncompahgre Uplift segment of the Ancestral Rocky Mountains and the western paleoshoreline of the North American portion of Pangea. The Paradox Basin region is commonly thought to have experienced semi-arid to arid conditions and warm temperatures during the Pennsylvanian and Permian. Evidence described in this paper support prior interpretations regarding paleoclimate conditions and the inferred depositional environment for the Cutler Formation near Gateway, Colorado. Plant fossils collected from the late Paleozoic Cutler Formation in The Palisade Wilderness Study Area (managed by the U.S. Department of the Interior, Bureau of Land Management) of western Colorado include Calamites, Walchia, Pecopteris, and many calamitean fragments. The flora collected is interpreted to have lived in an arid or semi-arid environment that included wet areas of limited areal extent located near the apex of an alluvial fan system. Palynological analysis of samples collected revealed the presence of the common Pennsylvanian palynomorphs Thymospora pseudothiessenii and Lophotriletes microsaetosus. These fossils suggest that warm and at least seasonally and locally wet conditions existed in the area during the time that the plants were growing. All evidence of late Paleozoic plant life collected during this study was found along the western margin of the Uncompahgre Uplift segment of the Ancestral Rocky Mountains. During the late Paleozoic, sediment was eroded from the Uncompahgre Uplift and deposited in the adjacent Paradox Basin. The preservation of plant fossils in the most proximal parts of the Paradox Basin is remarkable due to the fact that much of the proximal Cutler Formation consists of conglomerates and sandstones deposited as debris flow and by fluvial systems. The plants must have grown in a protected setting, possibly an abandoned channel on the alluvial fan, and been rapidly buried in the subsiding Paradox Basin. It is likely that there was abundant vegetation in and adjacent to low-lying wet areas at the time the Cutler Formation was deposited.
Resumo:
Connections between earth science and communities are not clear to many communities. This talk explores the geologic setting, the infrastructural damage, and the impact on communities of recent large earthquakes in Taiwan, Turkey, Haiti and Japan. Decisions made about geologic hazards had a profound impact on human life and the built environment. Ridgway shares how Purdue is building connections between the scientific community and Native American communities—especially by engaging Native American students in research on tribal lands.
Resumo:
eLearning supports the education in certain disciplines. Here, we report about novel eLearning concepts, techniques, and tools to support education in Software Engineering, a subdiscipline of computer science. We call this "Software Engineering eLearning". On the other side, software support is a substantial prerequisite for eLearning in any discipline. Thus, Software Engineering techniques have to be applied to develop and maintain those software systems. We call this "eLearning Software Engineering". Both aspects have been investigated in a large joint, BMBF-funded research project, termed MuSofT (Multimedia in Software Engineering). The main results are summarized in this paper.