891 resultados para SURVIVAL ANALYSIS
Resumo:
Hypoxic cancer cells are resistant to treatment, leading to the selection of cells with a more malignant phenotype. The expression of interleukin-8 (IL-8) plays an important role in the tumorigenesis and metastasis of solid tumors including prostate cancer. Recently, we detected elevated expression of IL-8 and IL-8 receptors in human prostate cancer tissue. The objective of the current study was to determine whether hypoxia increases IL-8 and IL-8 receptor expression in prostate cancer cells and whether this contributes to a survival advantage in hypoxic cells. IL-8, CXCR1 and CXCR2 messenger RNA (mRNA) expression in PC3 cells was upregulated in response to hypoxia in a time-dependent manner. Elevated IL-8 secretion following hypoxia was detected by enzyme-linked immunosorbent assay, while immunoblotting confirmed elevated receptor expression. Attenuation of hypoxia-inducible factor (HIF-1) and nuclear factor-kappaB (NF-kappaB) transcriptional activity using small interfering RNA (siRNA), a HIF-1 dominant-negative and pharmacological inhibitors, abrogated hypoxia-induced transcription of CXCR1 and CXCR2 in PC3 cells. Furthermore, chromatin-IP analysis demonstrated binding of HIF-1 and NF-kappaB to CXCR1. Finally, inhibition of IL-8 signaling potentiated etoposide-induced cell death in hypoxic PC3 cells. These results suggest that IL-8 signaling confers a survival advantage to hypoxic prostate cancer cells, and therefore, strategies to inhibit IL-8 signaling may sensitize hypoxic tumor cells to conventional treatments.
Resumo:
PURPOSE: To investigate whether failure to suppress the prostate-specific antigen (PSA) level to /=2 months of neoadjuvant luteinizing hormone-releasing hormone agonist therapy in patients scheduled to undergo external beam radiotherapy for localized prostate carcinoma is associated with reduced biochemical failure-free survival. METHODS AND MATERIALS: A retrospective case note review of consecutive patients with intermediate- or high-risk localized prostate cancer treated between January 2001 and December 2002 with neoadjuvant hormonal deprivation therapy, followed by concurrent hormonal therapy and radiotherapy was performed. Patient data were divided for analysis according to whether the PSA level in Week 1 of radiotherapy was 1 ng/mL in 52. At a median follow-up of 49 months, the 4-year actuarial biochemical failure-free survival rate was 84% vs. 60% (p = 0.0016) in favor of the patients with a PSA level after neoadjuvant hormonal deprivation therapy of 1 ng/mL at the beginning of external beam radiotherapy after >/=2 months of neoadjuvant luteinizing hormone-releasing hormone agonist therapy have a significantly greater rate of biochemical failure and lower survival rate compared with those with a PSA level of
Resumo:
Interspecific interactions are major structuring forces in marine littoral communities; however, it is unclear which of these interactions are exhibited by many key-component species. Gut content analysis showed that the ubiquitous rocky/cobble shore amphipod Echinogammarus marinas, often ascribed as a mesograzer, consumes both algae and macroinvertebrates. Further, laboratory experiments showed that E. marinus is an active predator of such macroinvertebrates, killing and consuming the isopod Jaera nordmanni and the oligochaete Tubificoides benedii. Predatory impacts of E. marinus were not alleviated by the presence of alternative food in the form of alga discs. However, in the presence of prey, consumption of alga by E. marinus was significantly reduced. Further, survival of prey was significantly higher when substrate was provided, but predation remained significant and did not decline with further increases in substrate heterogeneity. We conclude that such amphipods can have pervasive predatory impacts on a range of species, with implications for community structure, diversity and functioning.
Resumo:
Paraoxonase 1 (PON1) has been suggested as a plausible candidate gene for human longevity due to its modulation of cardiovascular disease risk, by preventing oxidation of atherogenic low-density lipoprotein. The role of the PON1 192 Q/R polymorphism has been analyzed for association with survival at old age in several populations, albeit with controversial results. To reconcile the conflicting evidence, we performed a large association study with two samples of 2357 Germans and 1025 French, respectively. We combined our results with those from seven previous studies in the largest and most comprehensive meta-analysis on PON1 192 Q/R and longevity to-date, to include a total of 9580 individuals. No significant association of PON1 192 Q/R with longevity was observed, for either R allele or carriership. This finding relied on very large sample sizes, is supported by different analysis methods and is therefore considered very robust. Moreover, we have investigated a potential interaction of PON1 192 Q/R with APOE epsilon4 using data from four populations. Whereas a significant result was found in the German sample, this could not be confirmed in the other examined groups. Our large-scale meta-analysis provided no evidence that the PON1 192 Q/R polymorphism is associated with longevity, but this does not exclude the possibility of population-specific effects due to the influence of, and interaction between, different genetic and/or environmental factors (e.g. diet).
Resumo:
Background: The bioenergetic status of non-small cell lung cancer correlates with tumour aggressiveness. The voltage dependent anion channel type 1 (VDAC1) is a component of the mitochondrial permeability transition pore, regulates mitochondrial ATP/ADP exchange suggesting that its over-expression could be associated with energy dependent processes including increased proliferation and invasiveness. To test this hypothesis, we conducted an in vivo gene-expression meta-analysis of surgically resected non-small cell lung cancer (NSCLC) using 602 individual expression profiles, to examine the impact of VDAC1 on survival.
Resumo:
Advances in stem cell science and tissue engineering are being turned into applications and products through a novel medical paradigm known as regenerative medicine. This paper begins by examining the vulnerabilities and risks encountered by the regenerative medicine industry during a pivotal moment in its scientific infancy: the 2000s. Under the auspices of New Labour, British medical scientists and life science innovation firms associated with regenerative medicine, received demonstrative rhetorical pledges of support, aligned with the publication of a number of government initiated reports presaged by Bioscience 2015: Improving National Health, Increasing National Wealth. The Department of Health and the Department of Trade and Industry (and its successors) held industry consultations to determine the best means by which innovative bioscience cultures might be promoted and sustained in Britain. Bioscience 2015 encapsulates the first chapter of this sustainability narrative. By 2009, the tone of this storyline had changed to one of survivability. In the second part of the paper, we explore the ministerial interpretation of the ‘bioscience discussion cycle’ that embodies this narrative of expectation, using a computer-aided content analysis programme. Our analysis notes that the ministerial interpretation of these reports has continued to place key emphasis upon the distinctive and exceptional characteristics of the life science industries, such as their ability to perpetuate innovations in regenerative medicine and the optimism this portends – even though many of the economic expectations associated with this industry have remained unfulfilled.
Resumo:
Polyphosphate is a ubiquitous linear homopolymer of phosphate residues linked by high-energy bonds similar to those found in ATP. It has been associated with many processes including pathogenicity, DNA uptake and multiple stress responses across all domains. Bacteria have also been shown to use polyphosphate as a way to store phosphate when transferred from phosphate-limited to phosphate-rich media - a process exploited in wastewater treatment and other environmental contaminant remediation. Despite this, there has, to date, been little research into the role of polyphosphate in the survival of marine bacterioplankton in oligotrophic environments. The three main proteins involved in polyphosphate metabolism, Ppk1, Ppk2 and Ppx are multi-domain and have differential inter-domain and inter-gene conservation, making unbiased analysis of relative abundance in metagenomic datasets difficult. This paper describes the development of a novel Isofunctional Homolog Annotation Tool (IHAT) to detect homologs of genes with a broad range of conservation without bias of traditional expect-value cutoffs. IHAT analysis of the Global Ocean Sampling (GOS) dataset revealed that genes associated with polyphosphate metabolism are more abundant in environments where available phosphate is limited, suggesting an important role for polyphosphate metabolism in marine oligotrophs.
Resumo:
The survival of pathogenic bacteria was investigated during the operation of a full-scale anaerobic digester which was fed daily and operated at 28-degrees-C. The digester had a mean hydraulic retention time of 24 d. The viable numbers of Escherichia coli, Salmonella typhimurium, Yersinia enterocolitica, Listeria monocytogenes and Campylobacter jejuni were reduced during mesophilic anaerobic digestion. Escherichia coli had the smallest mean viable numbers at each stage of the digestion process. Its mean T90 value was 76-9 d. Yersinia enterocolitica was the least resistant to the anaerobic digester environment; its mean T90 value was 18.2 d. Campylobacter jejuni was the most resistant bacterium; its mean T90 value was 438.6 d. Regression analysis showed that there were no direct relationships between the slurry input and performance of the digester and the decline of pathogen numbers during the 140 d experimental period.
Resumo:
BACKGROUND & AIMS:
Gastric cancer (GC) is a heterogeneous disease comprising multiple subtypes that have distinct biological properties and effects in patients. We sought to identify new, intrinsic subtypes of GC by gene expression analysis of a large panel of GC cell lines. We tested if these subtypes might be associated with differences in patient survival times and responses to various standard-of-care cytotoxic drugs.
METHODS:
We analyzed gene expression profiles for 37 GC cell lines to identify intrinsic GC subtypes. These subtypes were validated in primary tumors from 521 patients in 4 independent cohorts, where the subtypes were determined by either expression profiling or subtype-specific immunohistochemical markers (LGALS4, CDH17). In vitro sensitivity to 3 chemotherapy drugs (5-fluorouracil, cisplatin, oxaliplatin) was also assessed.
RESULTS:
Unsupervised cell line analysis identified 2 major intrinsic genomic subtypes (G-INT and G-DIF) that had distinct patterns of gene expression. The intrinsic subtypes, but not subtypes based on Lauren's histopathologic classification, were prognostic of survival, based on univariate and multivariate analysis in multiple patient cohorts. The G-INT cell lines were significantly more sensitive to 5-fluorouracil and oxaliplatin, but more resistant to cisplatin, than the G-DIF cell lines. In patients, intrinsic subtypes were associated with survival time following adjuvant, 5-fluorouracil-based therapy.
CONCLUSIONS:
Intrinsic subtypes of GC, based on distinct patterns of expression, are associated with patient survival and response to chemotherapy. Classification of GC based on intrinsic subtypes might be used to determine prognosis and customize therapy.
Resumo:
Burkholderia cenocepacia, a member of the B. cepacia complex, is an opportunistic pathogen that causes serious infections in patients with cystic fibrosis. We identified a six-gene cluster in chromosome 1 encoding a two-component regulatory system (BCAL2831 and BCAL2830) and an HtrA protease (BCAL2829) hypothesized to play a role in the B. cenocepacia stress response. Reverse transcriptase PCR analysis of these six genes confirmed they are cotranscribed and comprise an operon. Genes in this operon, including htrA, were insertionally inactivated by recombination with a newly created suicide plasmid, pGPOmegaTp. Genetic analyses and complementation studies revealed that HtrA(BCAL2829) was required for growth of B. cenocepacia upon exposure to osmotic stress (NaCl or KCl) and thermal stress (44 degrees C). In addition, replacement of the serine residue in the active site with alanine (S245A) and deletion of the HtrA(BCAL2829) PDZ domains demonstrated that these areas are required for protein function. HtrA(BCAL2829) also localizes to the periplasmic compartment, as shown by Western blot analysis and a colicin V reporter assay. Using the rat agar bead model of chronic lung infection, we also demonstrated that inactivation of the htrA gene is associated with a bacterial survival defect in vivo. Together, our data demonstrate that HtrA(BCAL2829) is a virulence factor in B. cenocepacia.
Resumo:
Background: Inflammation and genetic instability are enabling characteristics of prostate carcinoma (PCa). Inactivation of the tumour suppressor gene phosphatase and tensin homolog (PTEN) is prevalent in early PCa. The relationship of PTEN deficiency to inflammatory signalling remains to be characterised.
Objective: To determine how loss of PTEN functionality modulates expression and efficacy of clinically relevant, proinflammatory chemokines in PCa.
Design, setting and participants: Experiments were performed in established cell-based PCa models, supported by pathologic analysis of chemokine expression in prostate tissue harvested from PTEN heterozygous (Pten(+/-)) mice harbouring inactivation of one PTEN allele.
Interventions: Small interfering RNA (siRNA)- or small hairpin RNA (shRNA)-directed strategies were used to repress PTEN expression and resultant interleukin-8 (CXCL8) signalling, determined under normal and hypoxic culture conditions.
Outcome measurements and statistical analysis: Changes in chemokine expression in PCa cells and tissue were analysed by real-time polymerase chain reaction (PCR), immunoblotting, enzyme-linked immunosorbent assay (ELISA), and immunohistochemistry; effects of chemokine signalling on cell function were assessed by cell cycle analysis, apoptosis, and survival assays.
Results and limitations: Transient (siRNA) or prolonged (shRNA) PTEN repression increased expression of CXCL8 and its receptors, chemokine (C-X-C motif) receptor (CXCR) 1 and CXCR2, in PCa cells. Hypoxia-induced increases in CXCL8, CXCR1, and CXCR2 expression were greater in magnitude and duration in PTEN-depleted cells. Autocrine CXCL8 signalling was more efficacious in PTEN-depleted cells, inducing hypoxia-inducible factor-1 (HIF-1) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-?B) transcription and regulating genes involved in survival and angiogenesis. Increased expression of the orthologous chemokine KC was observed in regions displaying atypical cytologic features in Pten(+/-) murine prostate tissue relative to normal epithelium in wild-type PTEN (Pten(WT)) glands. Attenuation of CXCL8 signalling decreased viability of PCa cells harbouring partial or complete PTEN loss through promotion of G1 cell cycle arrest and apoptosis. The current absence of clinical validation is a limitation of the study.
Conclusions: PTEN loss induces a selective upregulation of CXCL8 signalling that sustains the growth and survival of PTEN-deficient prostate epithelium.
Resumo:
Oesophageal cancer survival is poor with variation across Europe. No pan-European studies of survival differences by oesophageal cancer subtype exist. This study investigates rates and trends in oesophageal cancer survival across Europe. Data for primary malignant oesophageal cancer diagnosed in 1995-1999 and followed up to the end of 2003 was obtained from 66 cancer registries in 24 European countries. Relative survival was calculated using the Hakulinen approach. Staging data were available from 19 registries. Survival by region, gender, age, morphology and stage was investigated. Cohort analysis and the period approach were applied to investigate survival trends from 1988 to 2002 for 31 registries in 17 countries. In total 51,499 cases of oesophageal cancer diagnosed 1995-1999 were analysed. Overall, European 1- and 5-year survival rates were 33.4% (95% CI 32.9-33.9%) and 9.8% (95% CI 9.4-10.1%), respectively. Males, older patients and patients with late stage disease had poorer 1- and 5-year relative survival. Patients with squamous cell carcinoma had poorer 1-year relative survival. Regional variation in survival was observed with Central Europe above and Eastern Europe below the European pool. Survival for distant stage disease was similar across Europe while survival rates for localised disease were below the European pool in Eastern and Southern Europe. Improvement in European 1-year relative survival was reported (p=0.016). Oesophageal cancer survival was poor across Europe. Persistent regional variations in 1-year survival point to a need for a high resolution study of diagnostic and treatment practices of oesophageal cancer.
Resumo:
Although a substantial corpus of digital materials is now available to scholarship across the disciplines, objective evidence of their use, impact, and value, based on a robust assessment, is sparse. Traditional methods of assessment of impact in the humanities, notably citation in scholarly publications, are not an effective way of assessing impact of digital content. These issues are problematic in the field of Digital Humanities where there is a need to effectively assess impact to justify its continued funding and existence. A number of qualitative and quantitative methods exist that can be used to monitor the use of digital resources in various contexts although they have yet to be applied widely. These have been made available to the creators, managers, and funders of digital content in an accessible form through the TIDSR (Toolkit for the Impact of Digital Scholarly Resources) developed by the Oxford Internet Institute. In 2011, the authors of this article developed the SPHERE project (Stormont Parliamentary Hansards: Embedded in Research and Education) specifically to use TIDSR to evaluate the use and impact of The Stormont Papers, a digital collection of the Hansards of the Stormont Northern Irish Parliament from 1921 to 1972. This article presents the methodology, findings, and analysis of the project. The authors argue that TIDSR is a useful and, critically, transferrable method to understand and increase the impact of digital resources. The findings of the project are modified into a series of wider recommendations on protecting the investment in digital resources by increasing their use, value, and impact. It is reasonable to suggest that effectively showing the impact of Digital Humanities is critical to its survival.
Resumo:
Epithelial ovarian cancer (EOC) has an innate susceptibility to become chemoresistant. Up to 30% of patients do not respond to conventional chemotherapy [paclitaxel (Taxol®) in combination with carboplatin] and, of those who have an initial response, many patients relapse. Therefore, an understanding of the molecular mechanisms that regulate cellular chemotherapeutic responses in EOC cells has the potential to impact significantly on patient outcome. The mitotic arrest deficiency protein 2 (MAD2), is a centrally important mediator of the cellular response to paclitaxel. MAD2 immunohistochemical analysis was performed on 82 high-grade serous EOC samples. A multivariate Cox regression analysis of nuclear MAD2 IHC intensity adjusting for stage, tumour grade and optimum surgical debulking revealed that low MAD2 IHC staining intensity was significantly associated with reduced progression-free survival (PFS) (p = 0.0003), with a hazard ratio of 4.689. The in vitro analyses of five ovarian cancer cell lines demonstrated that cells with low MAD2 expression were less sensitive to paclitaxel. Furthermore, paclitaxel-induced activation of the spindle assembly checkpoint (SAC) and apoptotic cell death was abrogated in cells transfected with MAD2 siRNA. In silico analysis identified a miR-433 binding domain in the MAD2 3' UTR, which was verified in a series of experiments. Firstly, MAD2 protein expression levels were down-regulated in pre-miR-433 transfected A2780 cells. Secondly, pre-miR-433 suppressed the activity of a reporter construct containing the 3'-UTR of MAD2. Thirdly, blocking miR-433 binding to the MAD2 3' UTR protected MAD2 from miR-433 induced protein down-regulation. Importantly, reduced MAD2 protein expression in pre-miR-433-transfected A2780 cells rendered these cells less sensitive to paclitaxel. In conclusion, loss of MAD2 protein expression results in increased resistance to paclitaxel in EOC cells. Measuring MAD2 IHC staining intensity may predict paclitaxel responses in women presenting with high-grade serous EOC.
Resumo:
Cathepsin L proteases secreted by the helminth pathogen Fasciola hepatica have functions in parasite virulence including tissue invasion and suppression of host immune responses. Using proteomics methods alongside phylogenetic studies we characterized the profile of cathepsin L proteases secreted by adult F. hepatica and hence identified those involved in host-pathogen interaction. Phylogenetic analyses showed that the Fasciola cathepsin L gene family expanded by a series of gene duplications followed by divergence that gave rise to three clades associated with mature adult worms (Clades 1, 2, and 5) and two clades specific to infective juvenile stages (Clades 3 and 4). Consistent with these observations our proteomics studies identified representatives from Clades 1, 2, and 5 but not from Clades 3 and 4 in adult F. hepatica secretory products. Clades 1 and 2 account for 67.39 and 27.63% of total secreted cathepsin Ls, respectively, suggesting that their expansion was positively driven and that these proteases are most critical for parasite survival and adaptation. Sequence comparison studies revealed that the expansion of cathepsin Ls by gene duplication was followed by residue changes in the S2 pocket of the active site. Our biochemical studies showed that these changes result in alterations in substrate binding and suggested that the divergence of the cathepsin L family produced a repertoire of enzymes with overlapping and complementary substrate specificities that could cleave host macromolecules more efficiently. Although the cathepsin Ls are produced as zymogens containing a prosegment and mature domain, all secreted enzymes identified by MS were processed to mature active enzymes. The prosegment region was highly conserved between the clades except at the boundary of prosegment and mature enzyme. Despite the lack of conservation at this section, sites for exogenous cleavage by asparaginyl endopeptidases and a Leu-Ser[downward arrow]His motif for autocatalytic cleavage by cathepsin Ls were preserved.