932 resultados para STEADY-STATE METHOD


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this work was to develop a generic methodology for evaluating and selecting, at the conceptual design phase of a project, the best process technology for Natural Gas conditioning. A generic approach would be simple and require less time and would give a better understanding of why one process is to be preferred over another. This will lead to a better understanding of the problem. Such a methodology would be useful in evaluating existing, novel and hybrid technologies. However, to date no information is available in the published literature on such a generic approach to gas processing. It is believed that the generic methodology presented here is the first available for choosing the best or cheapest method of separation for natural gas dew-point control. Process cost data are derived from evaluations carried out by the vendors. These evaluations are then modelled using a steady-state simulation package. From the results of the modelling the cost data received are correlated and defined with respect to the design or sizing parameters. This allows comparisons between different process systems to be made in terms of the overall process. The generic methodology is based on the concept of a Comparative Separation Cost. This takes into account the efficiency of each process, the value of its products, and the associated costs. To illustrate the general applicability of the methodology, three different cases suggested by BP Exploration are evaluated. This work has shown that it is possible to identify the most competitive process operations at the conceptual design phase and illustrate why one process has an advantage over another. Furthermore, the same methodology has been used to identify and evaluate hybrid processes. It has been determined here that in some cases they offer substantial advantages over the separate process techniques.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Liquid-liquid extraction has long been known as a unit operation that plays an important role in industry. This process is well known for its complexity and sensitivity to operation conditions. This thesis presents an attempt to explore the dynamics and control of this process using a systematic approach and state of the art control system design techniques. The process was studied first experimentally under carefully selected. operation conditions, which resembles the ranges employed practically under stable and efficient conditions. Data were collected at steady state conditions using adequate sampling techniques for the dispersed and continuous phases as well as during the transients of the column with the aid of a computer-based online data logging system and online concentration analysis. A stagewise single stage backflow model was improved to mimic the dynamic operation of the column. The developed model accounts for the variation in hydrodynamics, mass transfer, and physical properties throughout the length of the column. End effects were treated by addition of stages at the column entrances. Two parameters were incorporated in the model namely; mass transfer weight factor to correct for the assumption of no mass transfer in the. settling zones at each stage and the backmixing coefficients to handle the axial dispersion phenomena encountered in the course of column operation. The parameters were estimated by minimizing the differences between the experimental and the model predicted concentration profiles at steady state conditions using non-linear optimisation technique. The estimated values were then correlated as functions of operating parameters and were incorporated in·the model equations. The model equations comprise a stiff differential~algebraic system. This system was solved using the GEAR ODE solver. The calculated concentration profiles were compared to those experimentally measured. A very good agreement of the two profiles was achieved within a percent relative error of ±2.S%. The developed rigorous dynamic model of the extraction column was used to derive linear time-invariant reduced-order models that relate the input variables (agitator speed, solvent feed flowrate and concentration, feed concentration and flowrate) to the output variables (raffinate concentration and extract concentration) using the asymptotic method of system identification. The reduced-order models were shown to be accurate in capturing the dynamic behaviour of the process with a maximum modelling prediction error of I %. The simplicity and accuracy of the derived reduced-order models allow for control system design and analysis of such complicated processes. The extraction column is a typical multivariable process with agitator speed and solvent feed flowrate considered as manipulative variables; raffinate concentration and extract concentration as controlled variables and the feeds concentration and feed flowrate as disturbance variables. The control system design of the extraction process was tackled as multi-loop decentralised SISO (Single Input Single Output) as well as centralised MIMO (Multi-Input Multi-Output) system using both conventional and model-based control techniques such as IMC (Internal Model Control) and MPC (Model Predictive Control). Control performance of each control scheme was. studied in terms of stability, speed of response, sensitivity to modelling errors (robustness), setpoint tracking capabilities and load rejection. For decentralised control, multiple loops were assigned to pair.each manipulated variable with each controlled variable according to the interaction analysis and other pairing criteria such as relative gain array (RGA), singular value analysis (SVD). Loops namely Rotor speed-Raffinate concentration and Solvent flowrate Extract concentration showed weak interaction. Multivariable MPC has shown more effective performance compared to other conventional techniques since it accounts for loops interaction, time delays, and input-output variables constraints.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis is concerned with the investigation, by nuclear magnetic resonance spectroscopy, of the molecular interactions occurring in mixtures of benzene and cyclohexane to which either chloroform or deutero-chloroform has been added. The effect of the added polar molecule on the liquid structure has been studied using spin-lattice relaxation time, 1H chemical shift, and nuclear Overhauser effect measurements. The main purpose of the work has been to validate a model for molecular interaction involving local ordering of benzene around chloroform. A chemical method for removing dissolved oxygen from samples has been developed to encompass a number of types of sample, including quantitative mixtures, and its supremacy over conventional deoxygenation technique is shown. A set of spectrometer conditions, the use of which produces the minimal variation in peak height in the steady state, is presented. To separate the general diluting effects of deutero-chloroform from its effects due to the production of local order a series of mixtures involving carbon tetrachloride, instead of deutero-chloroform, have been used as non-interacting references. The effect of molecular interaction is shown to be explainable using a solvation model, whilst an approach involving 1:1 complex formation is shown not to account for the observations. It is calculated that each solvation shell, based on deutero-chloroform, contains about twelve molecules of benzene or cyclohexane. The equations produced to account for the T1 variations have been adapted to account for the 1H chemical shift variations in the same system. The shift measurements are shown to substantiate the solvent cage model with a cage capacity of twelve molecules around each chloroform molecule. Nuclear Overhauser effect data have been analysed quantitatively in a manner consistent with the solvation model. The results show that discrete shells only exist when the mole fraction of deutero-chloroform is below about 0.08.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recent developments in aerostatic thrust bearings have included: (a) the porous aerostatic thrust bearing containing a porous pad and (b) the inherently compensated compliant surface aerostatic thrust bearing containing a thin elastomer layer. Both these developments have been reported to improve the bearing load capacity compared to conventional aerostatic thrust bearings with rigid surfaces. This development is carried one stage further in a porous and compliant aerostatic thrust bearing incorporating both a porous pad and an opposing compliant surface. The thin elastomer layer forming the compliant surface is bonded to a rigid backing and is of a soft rubber like material. Such a bearing is studied experimentally and theoretically under steady state operating conditions. A mathematical model is presented to predict the bearing performance. In this model is a simplified solution to the elasticity equations for deflections of the compliant surface. Account is also taken of deflections in the porous pad due to the pressure difference across its thickness. The lubrication equations for flow in the porous pad and bearing clearance are solved by numerical finite difference methods. An iteration procedure is used to couple deflections of the compliant surface and porous pad with solutions to the lubrication equations. Comparisons between experimental results and theoretically predicted bearing performance are in good agreement. However these results show that the porous and compliant aerostatic thrust bearing performance is lower than that of a porous aerostatic thrust bearing with a rigid surface in place of the compliant surface. This discovery is accounted to the recess formed in the bearing clearance by deflections of the compliant surface and its effect on flow through the porous pad.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis was focused on theoretical models of synchronization to cortical dynamics as measured by magnetoencephalography (MEG). Dynamical systems theory was used in both identifying relevant variables for brain coordination and also in devising methods for their quantification. We presented a method for studying interactions of linear and chaotic neuronal sources using MEG beamforming techniques. We showed that such sources can be accurately reconstructed in terms of their location, temporal dynamics and possible interactions. Synchronization in low-dimensional nonlinear systems was studied to explore specific correlates of functional integration and segregation. In the case of interacting dissimilar systems, relevant coordination phenomena involved generalized and phase synchronization, which were often intermittent. Spatially-extended systems were then studied. For locally-coupled dissimilar systems, as in the case of cortical columns, clustering behaviour occurred. Synchronized clusters emerged at different frequencies and their boundaries were marked through oscillation death. The macroscopic mean field revealed sharp spectral peaks at the frequencies of the clusters and broader spectral drops at their boundaries. These results question existing models of Event Related Synchronization and Desynchronization. We re-examined the concept of the steady-state evoked response following an AM stimulus. We showed that very little variability in the AM following response could be accounted by system noise. We presented a methodology for detecting local and global nonlinear interactions from MEG data in order to account for residual variability. We found crosshemispheric nonlinear interactions of ongoing cortical rhythms concurrent with the stimulus and interactions of these rhythms with the following AM responses. Finally, we hypothesized that holistic spatial stimuli would be accompanied by the emergence of clusters in primary visual cortex resulting in frequency-specific MEG oscillations. Indeed, we found different frequency distributions in induced gamma oscillations for different spatial stimuli, which was suggestive of temporal coding of these spatial stimuli. Further, we addressed the bursting character of these oscillations, which was suggestive of intermittent nonlinear dynamics. However, we did not observe the characteristic-3/2 power-law scaling in the distribution of interburst intervals. Further, this distribution was only seldom significantly different to the one obtained in surrogate data, where nonlinear structure was destroyed. In conclusion, the work presented in this thesis suggests that advances in dynamical systems theory in conjunction with developments in magnetoencephalography may facilitate a mapping between levels of description int he brain. this may potentially represent a major advancement in neuroscience.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the absence of adequate visual stimulation accommodation adopts an intermediate resting position, appropriately termed tonic accommodation (TA). A period of sustained fixation can modify the tonic resting position, and indicate the adaptation properties of TA. This thesis investigates various factors contributing to the accommodative response during sustained visual tasks, in particular the adaptation of TA. Objective infra-red optometry was chosen as the most effective method of measurement of accommodation. This technique was compared with other methods of measuring TA and the results found to be well correlated. The inhibitory sympathetic input to the ciliary muscle provides the facility to attenuate the magnitude and duration of adaptive changes in TA. This facility is, however, restricted to those individuals having relatively high levels of pre-task TA. Furthermore, the facility is augmented by substantial levels of concurrent parasympathetic activity. The imposition of mental effort can induce concurrent changes in TA which are predominantly positive and largely the result of an increase in parasympathetic innervation of the ciliary muscle although there is some evidence for sympathetic attentuation at higher levels of TA. In emmetropes sympathetic inhibition can modify the effect of mental effort on the steady-state accommodative response at near. Late-onset myopes (onset after the age of 15 years) have significantlylower values of TA then emmetropes. Similarly, late-onset myopes show lower values of steady-state accommodative response for nearstimuli. The imposition of mental effort induces concurrent increases in TA and steady-state accommodative response in the myopic group which are significantly greater than those for emmetropes. Estimates of TA made under bright empty-field conditions are well correlated with those made under darkroom conditions. The method by which the accommodative loop is opened has no significant effect on the magnitude and duration of post-task shifts in TA induced by a near vision task. Significant differences in the post-task shifts in TA induced by a near vision task exist between emmetropes and late-onset myopes, the post-task shifts being more sustained for the myopic group.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis addresses the kineto-elastodynamic analysis of a four-bar mechanism running at high-speed where all links are assumed to be flexible. First, the mechanism, at static configurations, is considered as structure. Two methods are used to model the system, namely the finite element method (FEM) and the dynamic stiffness method. The natural frequencies and mode shapes at different positions from both methods are calculated and compared. The FEM is used to model the mechanism running at high-speed. The governing equations of motion are derived using Hamilton's principle. The equations obtained are a set of stiff ordinary differential equations with periodic coefficients. A model is developed whereby the FEM and the dynamic stiffness method are used conjointly to provide high-precision results with only one element per link. The principal concern of the mechanism designer is the behaviour of the mechanism at steady-state. Few algorithms have been developed to deliver the steady-state solution without resorting to costly time marching simulation. In this study two algorithms are developed to overcome the limitations of the existing algorithms. The superiority of the new algorithms is demonstrated. The notion of critical speeds is clarified and a distinction is drawn between "critical speeds", where stresses are at a local maximum, and "unstable bands" where the mechanism deflections will grow boundlessly. Floquet theory is used to assess the stability of the system. A simple method to locate the critical speeds is derived. It is shown that the critical speeds of the mechanism coincide with the local maxima of the eigenvalues of the transition matrix with respect to the rotational speed of the mechanism.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Based on an assumption that a steady state exists in the full-memory multidestination automatic repeat request (ARQ) scheme, we propose a novel analytical method called steady-state function method (SSFM), to evaluate the performance of the scheme with any size of receiver buffer. For a wide range of system parameters, SSFM has higher accuracy on throughput estimation as compared to the conventional analytical methods.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this article we develop a simple model to describe the evolution of a depositional wax layer on the inner surface of a circular pipe transporting heated oil, which contains dissolved wax. When the outer pipe surface is cooled sufficiently, the growth of a wax layer is initiated on the inner pipe wall, and this evolves to a saturated steady state thickness. The model proposed is based on fundamental balances of heat flow from the oil, into the wax layer, and across the pipe wall. We present an analysis of the model, examine a relevant asymptotic limit in which the full details of the solution to the model are available and develop an efficient numerical method (based on the method of fundamental solutions) for producing approximations of the model solution. The mathematical structure of the model is that of a free boundary evolution problem of generalised Stefan type. © The Author, 2014.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this article we develop a simple model to describe the evolution of a depositional wax layer on the inner surface of a circular pipe transporting heated oil, which contains dissolved wax. When the outer pipe surface is cooled sufficiently, the growth of a wax layer is initiated on the inner pipe wall, and this evolves to a saturated steady state thickness. The model proposed is based on fundamental balances of heat flow from the oil, into the wax layer, and across the pipe wall. We present an analysis of the model, examine a relevant asymptotic limit in which the full details of the solution to the model are available and develop an efficient numerical method (based on the method of fundamental solutions) for producing approximations of the model solution. The mathematical structure of the model is that of a free boundary evolution problem of generalised Stefan type. © The Author, 2014.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Potentiostatically induced current transients obtained on a range of reinforced concrete specimens were analysed to give estimates of the polarisation resistance and interfacial capacitance. The polarisation resistance was compared with the values obtained using more conventional DC methods of analysis and, while it was consistently lower, it was within the error normally attributed to the polarisation resistance method of corrosion rate determination. The interfacial capacitance values determined increased from 0.44 F m -2 for passive steel (polarisation resistance of 132 Ω m 2) to 26.5 F m -2 for active steel (polarisation resistance of 0.34 Ω m 2). This has a dominant effect on the time required for potentiostatically induced current transients to reach a steady state with a longer time being required by actively corroding steel. By contrast the potential decay time constants describing galvanostatically or coulostatically induced potential transients decrease with an increase in corrosion rate and values less than 25 s for active specimens and greater than 40 s for passive specimens were determined in this work. © 1997 Elsevier Science Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33; 93C15, 93C55, 93B36, 93B35, 93B51; 03B42; 70Q05; 49N05

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Permanent magnet synchronous motors (PMSMs) provide a competitive technology for EV traction drives owing to their high power density and high efficiency. In this paper, three types of interior PMSMs with different PM arrangements are modeled by the finite element method (FEM). For a given amount of permanent magnet materials, the V shape interior PMSM is found better than the U-shape and the conventional rotor topologies for EV traction drives. Then the V shape interior PMSM is further analyzed with the effects of stator slot opening and the permanent magnet pole chamfering on cogging torque and output torque performance. A vector-controlled flux-weakening method is developed and simulated in matlab to expand the motor speed range for EV drive system. The results show good dynamic and steady-state performance with a capability of expanding speed up to 4 times of the rated. A prototype of the V shape interior PMSM is also manufactured and tested to validate the numerical models built by the finite element method.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The main objective for physics based modeling of the power converter components is to design the whole converter with respect to physical and operational constraints. Therefore, all the elements and components of the energy conversion system are modeled numerically and combined together to achieve the whole system behavioral model. Previously proposed high frequency (HF) models of power converters are based on circuit models that are only related to the parasitic inner parameters of the power devices and the connections between the components. This dissertation aims to obtain appropriate physics-based models for power conversion systems, which not only can represent the steady state behavior of the components, but also can predict their high frequency characteristics. The developed physics-based model would represent the physical device with a high level of accuracy in predicting its operating condition. The proposed physics-based model enables us to accurately develop components such as; effective EMI filters, switching algorithms and circuit topologies [7]. One of the applications of the developed modeling technique is design of new sets of topologies for high-frequency, high efficiency converters for variable speed drives. The main advantage of the modeling method, presented in this dissertation, is the practical design of an inverter for high power applications with the ability to overcome the blocking voltage limitations of available power semiconductor devices. Another advantage is selection of the best matching topology with inherent reduction of switching losses which can be utilized to improve the overall efficiency. The physics-based modeling approach, in this dissertation, makes it possible to design any power electronic conversion system to meet electromagnetic standards and design constraints. This includes physical characteristics such as; decreasing the size and weight of the package, optimized interactions with the neighboring components and higher power density. In addition, the electromagnetic behaviors and signatures can be evaluated including the study of conducted and radiated EMI interactions in addition to the design of attenuation measures and enclosures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Drillhole-determined sea-ice thickness was compared with values derived remotely using a portable small-offset loop-loop steady state electromagnetic (EM) induction device during expeditions to Fram Strait and the Siberian Arctic, under typical winter and summer conditions. Simple empirical transformation equations are derived to convert measured apparent conductivity into ice thickness. Despite the extreme seasonal differences in sea-ice properties as revealed by ice core analysis, the transformation equations vary little for winter and summer. Thus, the EM induction technique operated on the ice surface in the horizontal dipole mode yields accurate results within 5 to 10% of the drillhole determined thickness over level ice in both seasons. The robustness of the induction method with respect to seasonal extremes is attributed to the low salinity of brine or meltwater filling the extensive pore space in summer. Thus, the average bulk ice conductivity for summer multiyear sea ice derived according to Archie's law amounts to 23 mS/m compared to 3 mS/m for winter conditions. These mean conductivities cause only minor differences in the EM response, as is shown by means of 1-D modeling. However, under summer conditions the range of ice conductivities is wider. Along with the widespread occurrence of surface melt ponds and freshwater lenses underneath the ice, this causes greater scatter in the apparent conductivity/ice thickness relation. This can result in higher deviations between EM-derived and drillhole determined thicknesses in summer than in winter.